PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interfaces-engineered M-structure for infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors report strain-balanced M-structures InAs/GaSb/AlSb/GaSb superlattice growth on GaSb substrates using two kinds of interfaces (IFs): GaAs-like IFs and InSb-like IFs. The in-plane compressive strain of 60-period and 100-period InAsm/GaSb/AlSbn/GaSb with different InAs (m) and AlSb (n) monolayers are investigated. The M-structures InAs/GaSb/AlSb/GaSb represent type II superlattices (T2SL) and at present are under intensive investigation. Many authors showtheoretical and experimental results that such structures can be used as a barrier material for a T2SL InAs/GaSb absorber tuned for long-wave infrared detectors (8 μm–14 μm). Beside that, M-structure can also be used as an active material for short-wave infrared detectors to replace InAs/GaSb which, for this region of infrared, are a big challenge from the point of view of balancing compression stress. The study of InAs/GaSb/AlSb/GaSb superlattice with the minimal strain for GaSb substrate can be obtained by a special procedure of molecular beam epitaxy growth through special shutters sequence to form both IFs. The authors were able to achieve smaller minimal mismatches of the lattice constants compared to literature. The high-resolution X-ray diffraction measurements prove that two types of IFs are proper for balancing the strain in such structures. Additionally, the results of Raman spectroscopy, surface analyses of atomic force microscopy, and differential interference contrast microscopy are also presented. The numerical calculations presented in this paper prove that the presence of IFs significantly changes the energy gap in the case of the investigated M-structures. The theoretical results obtained for one of the investigated structures, for a specially designed structure reveal an extra energy level inside the energy gap. Moreover, photoluminescence results obtained for this structure prove the good quality of the synthesized M-structures, as well as are in a good agreement with theoretical calculations.
Rocznik
Strony
art. no. e150183
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
autor
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
autor
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
autor
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, al. Rejtana 16, 35-959 Rzeszów, Poland
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Bouschet, M. et al. Temperature dependence study of electrical and electro-optical performances of midwave infrared Ga-Free T2SL arrier photodetector. Appl. Sci. 12, 10358 (2022). https://doi.org/10.3390/app122010358.
  • [2] Dehzangi, A., Haddadi, A., Chevallier, R., Zhang, Y. & Razeghi, M. Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semicond. Sci. Technol. 34, 03LT01 (2019). https://doi.org/10.1088/1361-6641/aaf770.
  • [3] Müller, R. et al. Advances in type-II superlattice research at Fraunhofer IAF. Opto-Electron. Rev. 31, e144553 (2023). https://doi.org/10.24425/opelre.2023.144553.
  • [4] Nguyen, B.-M., Razeghi, M., Nathan, V. & Brown, G. J. Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes. Proc. SPIE 6479, 64790S (2007). https://doi.org/10.1117/12.711588.
  • [5] Lang, X.-L. & Xia, J.-B. Electronic structure and optical properties of InAs/GaSb/AlSb/GaSb superlattice. J. Appl. Phys. 113, 043715 (2013). https://doi.org/10.1063/1.4780704.
  • [6] Nguyen, B.-M., Hoffman, D., Delaunay, P.-Y., Huang, E. & Razeghia, M. Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K. Appl. Phys. Lett. 93, 123502 (2008). https://doi.org/10.1063/1.2978330.
  • [7] Razeghi, M. & Nguyen, B.-M. Band gap tunability of type II Antimonide-based superlattices. Phys. Procedia 3, 1207-1212 (2010). https://doi.org/10.1016/j.phpro.2010.01.164.
  • [8] Du, Y., Xu, Y. & Song, G. Theoretical analysis on the energy band properties of N- and M-structure type-II superlattices. Superlattices Microstruct. 145, 106590 (2020). https://doi.org/10.1016/j.spmi.2020.106590.
  • [9] Razeghi, M. et al. Advances in antimonide-based type-II superlattices for infrared detection and imaging at center for quantum devices. Infrared Phys. Technol. 59, 41-52 (2013). https://doi.org/10.1016/j.infrared.2012.12.008.
  • [10] Pour, S. A. et al. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices. Appl. Phys. Lett. 98, 143501 (2011). https://doi.org/10.1063/1.3573867.
  • [11] Razeghi, M., Dehzangi, A. & Li, J. Multiband SWIR-MWIR-LWIR type-II superlattice based infrared photodetector. Results Opt. 2, 100054 (2021). https://doi.org/10.1016/j.rio.2021.100054.
  • [12] Hoang, A., Chen, G., Haddadi, A., Abdollahi Pour, S. & Razeghi, M. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 100, 211101 (2012). https://doi.org/10.1063/1.4720094.
  • [13] Tang, B. et al. GaAs Based InAs/GaSb superlattice Short Wavelength infrared detectors grown by molecular beam epitaxy. Chin. Phys. Lett. 26, 028102 (2009). https://doi.org/10.1088/0256-307X/26/2/028102.
  • [14] Guo, J., Hao, R., Zhao, Q. & Man, S. Bandtailored InAs/GaSb superlattice in infrared application. Adv. Mat. Res. 750-752, 936-940 (2013). https://doi.org/10.4028/www.scientific.net/AMR.750-752.936.
  • [15] Delmas, M., Rossignol, R., Rodriguez, J. & Christol, P. Design of InAs/GaSb superlattice infrared barrier detectors. Superlattices Microstruct. 104, 402-414 (2017). https://doi.org/10.1016/j.spmi.2017.03.001.
  • [16] Birner, S. et al. Nextnano: general purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137-2142 (2007). https://doi.org/10.1109/TED.2007.902871.
  • [17] Birner, S. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces. Ph.D. thesis, Universität München (2011).
  • [18] Bahder, T. B. Eight-bandk pmodel of strained zincblende crystals. Phys. Rev. B 41, 11992-12001 (1990). https://doi.org/10.1103/PhysRevB.41.11992.
  • [19] Birner, S. & Povolotskyi, M. InAs / In0.4Ga0.6Sb superlattice dispersion with 8-band k.p (type-II band alignment). https://www.nextnano.com/documentation/tools/nextnanoplus/tutorials/1D_superlattice_dispersion_8kp.html.
  • [20] Motyka, M. et al. Fourier transformed photoreflectance and photoluminescence of mid infrared gasb-based type II quantum wells. Appl. Phys. Express 2, 126505 (2009). https://doi.org/ 10.1143/APEX.2.126505.
  • [21] Rygała, M. et al. Investigating the physics of higher-order optical transitions in InAs/GaSb superlattices. Phys. Rev. B 104, 085410 (2021). https://doi.org/10.1103/PhysRevB.104.085410.
  • [22] Xu, D. et al. Structure stability of short-period InAs/AlSb superlattices. J. Cryst. Growth 251, 547-550 (2003). https://doi.org/10.1016/S0022-0248(02)02395-3.
  • [23] Diaz Reyes, J. et al. Structural and optical characterization of type II In0.14Ga 0.86As0.13Sb0.87/GaSb heterostructure doped with zinc grown by liquid phase epitaxy. Vib. Spectrosc. 68, 109-114 (2013). https://doi.org/10.1016/j.vibspec.2013.05.016.
  • [24] Zhang, Y. et al. Molecular beam epitaxial growth of AlSb/InAsSb heterostructures. Appl. Surf. Sci. 313, 479-483 (2014). https://doi.org/10.1016/j.apsusc.2014.06.009.
  • [25] Jasik, A. et al. Strain-balanced InAs/GaSb superlattices used for the detection of VLWIR radiation. Infrared Phys. Technol. 122, 104109 (2022). https://doi.org/10.1016/j.infrared.2022.104109.
  • [26] Marchewka, M. et al. Strain-balanced InAs/AlSb type-II superlattice structures growth on GaSb substrate by molecular beam epitaxy. Materials 16, 1968 (2023). https://doi.org/10.3390/ma16051968.
  • [27] Numai, T. Fundamentals of Semiconductor Lasers, vol. 89-186 (Springer„ 2015).
  • [28] Schmidt, T., Lischka, K. & Zulehner, W. Excitationpower dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989-8994 (1992). https://doi.org/10.1103/PhysRevB.45.8989.
  • [29] Shibata, H. et al. Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. 44, 6113 (2005). https://doi.org/10.1143/JJAP.44.6113.
  • [30] Spindler, C., Galvani, T., Wirtz, L., Rey, G. & Siebentritt, S. Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors. J. Appl. Phys. 126, 175703 (2019). https://doi.org/10.1063/1.5095235.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e4a0c9c-30ab-4e42-9c78-07af6dd65296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.