PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Case study for containerships’ seakeeping performance analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seakeeping capabilities represent a crucial aspect of marine hydrodynamics research. Calculating the movements, amplitudes, and accelerations of the ships offers valuable support for assessing and forecasting their safety and security parameters while the ships are in use. While experimental data on ship movements in consistent wave patterns are considered reliable, they also come with high impacting costs. This research is particularly designed to estimate the seakeeping performance by assessing the hydrodynamic response of a 192-meter-long container ship vessel in both regular and irregular waves. The present computational study is focused on predicting the six degrees of freedom responses for a ship at zero speed for different heading angles. Using the panel method within Maxsurf Motions software, RAOs for all degrees of freedom are obtained. In irregular sea simulations, the ITTC spectrum is employed.
Słowa kluczowe
Rocznik
Strony
47--56
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Romanian Naval Academy “Mircea cel Batran” 1st Fulgerului St., Constanta, Romania
autor
  • Romanian Naval Academy “Mircea cel Batran” 1st Fulgerului St., Constanta, Romania
  • Romanian Navy Research Centre Constanta, Romania
Bibliografia
  • 1. Abhilash, S. & Falzarano, J. (2015) Large-amplitude time-domain simulation tool for marine and offshore motion prediction. Marine Systems & Ocean Technology 10 (1), pp. 1‒17, doi: 10.1007/s40868-015-0002-7.
  • 2. Askarian, K.A. & Ketabdari, M.J. (2019) Wave-induced loads on cross-deck of a wave-piercing trimaran with different hull forms of outriggers. Transport 34 (5), pp. 559‒568, doi: 10.3846/transport.2019.11376.
  • 3. Clauss, G. Lehmann, E. & Ostregaard, C. (2015) Offshore Structures. Volume I: Conceptual Design and Hydromechanics. Springer-Verlag.
  • 4. Dyachkov, V. & Makov, J. (2005) Seakeeping of a fast displacement catamaran. Transport 20 (1), pp. 14‒22, doi: 10. 3846/16484142.2005.9637990.
  • 5. Firdaus, N. & Ali, B. (2017) Experimental study of the probability distributions on the seakeeping performance of monohull and catamaran design. Journal of Ocean, Mechanical and Aerospace 47 (1), pp. 1–5.
  • 6. Kjellberg, M. Gerhardt, F.C. & Werner, S. (2022) Sailing in waves: A numerical method for analysis of seakeeping performance and dynamic behaviour of a wind powered ship. SNAME 24th Chesapeake Sailing Yacht Symposium, June 10‒11, 2022, Annapolis, Maryland, USA.
  • 7. Lupchian, M. (2020) Influence of propulsion installation performance on travel efficiency. Technium: Romanian Journal of Applied Sciences and Technology 2 (7), pp. 50– 53, doi: 10.47577/technium.v2i7.1644.
  • 8. Nam, S. Park, J. & Yoon, H. (2024) Numerical Simulation of Seakeeping Performance of a Barge Using Computational Fluid Dynamics (CFD)-Modified Potential (CMP) Model. Journal of Marine Science and Engineering 12 (3), 369, doi: 10.3390/jmse12030369.
  • 9. Nguyen, T.T. Vu, H.T. Cho, A. & Yoon, H. (2024) Investigation of seakeeping performance of trawler by the influence of the principal particulars of ships in the Bering Sea. Journal of Ocean Engineering and Technology 38 (2), pp. 43‒52, doi: 10.26748/KSOE.2023.038.
  • 10. Olusegun, S.D. Elakpa A.A. Orji, C.U. & Tamunodukobipi, D. (2024) Simulation of a container vessel using boundary element method for the computation of hydrodynamic pressure and forces. International Journal of Advances in Engineering and Management 6 (12), pp. 241‒248, doi: 10.35629/5252-0612241248.
  • 11. Ozturk, D. Delen, C. Mancini, S. Şerifoğlu, M.O. & Hizarci, T. (2021) Full-scale CFD analysis of double-m craft seakeeping performance in regular head waves. Journal of Marine Science and Engineering 9 (5), 504, doi: 10.3390/ jmse9050504.
  • 12. Scurtu, I. & Atodiresei, D. (2015) RAO functions simulation for semi-submersibiles. “Mircea cel Batran” Naval Academy Scientific Bulletin 18 (2), pp. 8‒13.
  • 13. Scurtu, I.C. Popa, A. Ristea, M. & Marasescu, D. (2015) Seakeeping analysis of semisubmersibles in irregular waves. “Mircea cel Batran” Naval Academy Scientific Bulletin 19 (1), pp. 100‒104.
  • 14. Scurtu, I.C. Pricop, M. Toma, A. Atodiresei, D. & Popescu, E. (2022) Review of ship behavior characteristics when operating at sea. Technium: Romanian Journal of Applied Sciences and Technology 4 (5), pp. 8–14, doi: 10.47577/technium.v4i5.6674.
  • 15. Song, L.W. Wang, Z. & Xu, Y. (2021) Analysis of the seakeeping performance for Unmanned Underwater vehicle using STAR-CCM+. Journal of Physics: Conference Series 1985, 5th International Conference on Fluid Mechanics and Industrial Applications (FMIA 2021), 26‒27 June 2021, Taiyuan City, China, doi: 10.1088/1742-6596/1985/1/012020.
  • 16. Umeda, N. Usada, S. Mizumoto, K. & Matsuda, A. (2016) Broaching probability for a ship in irregular stern-quartering waves: theoretical prediction and experimental validation. Journal of Marine Science and Technology, 21 (1), pp. 23‒37, doi: 10.1007/s00773-015-0364-8.
  • 17. pp. 23‒37, doi: 10.1007/s00773-015-0364-8. 17. Wulandari, A.I. Utama, I.K. Sulisetyono, A. Ali, B. Virliani, P. Arianti, E. Nurhadi, N. Mudhoffar, M.A. Arifah, A.K. & Zen, H. (2024) Seakeeping performance of warship catamaran under varied hull separation and wave heading conditions: An integrated numerical and experimental studies. Scientific Journal of Maritime Research “Pomorstvo” 38 (2), 32666, pp 275‒296, doi: 10.31217/p.38.2.9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e493f20-ff92-4dd1-bf09-c9b994d7ac1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.