PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of xanthate adsorption on chrysocolla surface via sodium diethyldithiocarbamate (DDTC) modification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chrysocolla is a kind of copper oxide mineral which was difficult to float. In this study, Diethyldithiocarbamate (DDTC) was employed to modify the surface of chrysocolla to improve its xanthate adsorption and floatability. Flotation experiments showed that the DDTC exhibited ability to activate rather than acting as a collector for chrysocolla flotation. After DDTC activation, chrysocolla can be effectively recovered by xanthate. The activation mechanism of DDTC was investigated via Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). During the activation, DDTC bonded to the surface copper atoms of chrysocolla, and more Cu(II) species on the mineral surface were reduced to Cu(I) species, which caused the formation of larger amounts of Cu active sites as –N–C(=S)S–Cu(II)– and Cu(I) species. The results of the adsorption tests and zeta potential measurements revealed that the DDTC-modified mineral surface reinforced adsorption of xanthate ions, thereby improving the chrysocolla floatability. Therefore, the Cu ions double interaction of DDTC and xanthate on the chrysocolla surfaces enhanced the strength and stability of the hydrophobic layer, resulting in an enhanced hydrophobization of the chrysocolla for its flotation.
Rocznik
Strony
art. no. 152599
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, China
  • Yunnan Diqing Nonferrous Metals Co., Ltd, Diqing Tibetan Autonomous Prefecture 674400, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, China
Bibliografia
  • LEE, J. S., NAGARAJ, D. R., COE, J. E., 1998. Practical aspects of oxide copper recovery with alkyl hydroxamates. Minerals Engineering. 11, 929-939.
  • LI, F., ZHONG, H., XU, H., JIA, H., LIU, G., 2015. Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite. Minerals Engineering, 71, 188-193.
  • CHEN, D., LIU, M., HU, B., DONG, Y., XUE, W., HE, P., CHEN, F., ZHU, J., ZHANG, 2021. New insights into the promotion mechanism of (NH4)2SO4 in sulfidization flotation: a combined experimental and computational study. Physicochemical Problems of Mineral Processing. 57(5), 57-70
  • SHI, G., LIAO, Y., SU, B., ZHANG, Y., WANG, W., XI, J.J.S., 2020. Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Separation and Purification Technology, 214, 116699.
  • HEYES, G. W., TRAHAR, W. J., 1979, Oxidation-Reduction effects in the flotation of chalcocite and cuprite. International Journal of Mineral Processing, 6, 229-252.
  • SAMSONOVA, N. S., GUTSALYUK, T. G., AITALIEVA, S. G., Flotation of Azurite. Soviet Mining. 1974. 10, 105-108.
  • LEE, K., ARCHIBALD, D., MCLEAN, J., REUTER, M. A., 2009, Flotation of mixed copper oxide and sulphide minerale with xanthate and hydroxamate collectors. Minerals Engineering, 22, 395-401.
  • CORIN, K. C., KALICHINI, M., O‘CONNOR, C. T., SIMUKANGA, S., The recovery of oxide copper minerals from a complex copper ore by sulphidisation. Minerals Engineering. 2017, 102, 15-17.
  • APLAN, F. F., FUERSTENAU, D. W., 1984. The flotation of chrysocolla by mercaptan. International Journal of Mineral Processing, 13, 105-115.
  • BARBARO, M., URBINA, R. H., COZZA, C., FUERSTENAU, D., MARABINI, A., 1997. Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector. International Journal of Mineral Processing, 50, 275-287.
  • FENG, Q., ZHAO, W., WEN, S., 2018. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Applied Surface Science, 436, 823-831.
  • DENG, T., CHEN, J., Treatment of Oxidized Copper Ores with Emphasis on Refractory Ores. Mineral Processing & Extractive Metallurgy Review. 1991, 7, 175-207.
  • FUERSTENAU, D. W., HERRERA-URBINA, R., MCGLASHAN, D. W., 2000. Studies on the applicability of chelating agents as universal collectors for copper minerals. International Journal of Mineral Processing, 58, 15-33.
  • HOPE, G. A., WOODS, R., PARKER, G. K., BUCKLEY, A. N., MCLEAN, J., 2010. A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals. Minerals Engineering, 23, 952-959.
  • CARRILLO, R. R., CARRILLO, R. R., The distribution of promoting reagent in flotation pulps containing chrysocolla. Computation of Forces on A Rotating Windsat Reflector. 1939.
  • HOPE, G. A., NUMPRASANTHAI, A., BUCKLEY, A. N., PARKER, G. K., SHELDON, G., 2012. Bench-scale flotation of chrysocolla with n-octanohydroxamate. Minerals Engineering, 36-38, 12-20.
  • HOPE, G. A., BUCKLEY, A. N., PARKER, G. K., NUMPRASANTHAI, A., WOODS, R., MCLEAN, J., 2012. The interaction of n -octanohydroxamate with chrysocolla and oxide copper surfaces. Minerals Engineering, 36-38, 2-11.
  • RAGHAVAN, S., ADAMEC, E., LEE, L., Sulfidization and flotation of chrysocolla and brochantite. International Journal of Mineral Processing. 1983, 12, 173-191.
  • BANZA, A. N., GOCK, E., 2003. Mechanochemical processing of chrysocolla with sodium sulphide. Minerals Engineering., 16, 1349-1354.
  • CASTRO, S., SOTO, H., GOLDFARB, J., LASKOWSKI, J., 1974. Sulphidizing reactions in the flotation of oxidized copper minerals, II. Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. International Journal of Mineral Processing, 1, 151-161.
  • FENG, Q., WEN, S., DENG, J., ZHAO, W., 2017. DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface. Applied Surface Science, 396, 920-925.
  • FENG, Q., WEN, S., DENG, J., ZHAO, W., 2017. Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Applied Surface Science, 425, 8-15.
  • MA, X., HU, Y., ZHONG, H., WANG, S., LIU, G., ZHAO, G., 2016. A novel surfactant S-benzoyl-N,N-diethyldithiocarbamate synthesis and its flotation performance to galena. Applied Surface Science, 365, 342-351.
  • GUPTA, A. N., SINGH, V., KUMAR, V., RAJPUT, A., SINGH, L., DREW, M. G. B., SINGH, N., 2013. Syntheses, crystal structures and conducting properties of new homoleptic copper (II) dithiocarbamate complexes. Inorganica Chimica Acta, 408, 145-151.
  • GUPTA, A. N., KUMAR, V., SINGH, V., RAJPUT, A., PRASAD, L. B., DREW, M. G. B., Singh, N., 2015. Influence of functionalities on the structure and luminescent properties of organotin(IV) dithiocarbamate complexes. Journal of Organometallic Chemistry, 787, 65-72.
  • NAGARAJ, D., R., BRINEN, J., S., SIMS study of adsorption of collectors on pyrite. International Journal of Mineral Processing. 2001, 63, 45-57.
  • MCFADZEAN, B., MOLLER, K., P., O'CONNOR, C., T., 2015, A thermochemical study of thiol collector surface reactions on galena and chalcopyrite. Min. Eng., 78, 83-88.
  • CHEN, J., LAN, L., YE, C., 2013. Computational simulation of adsorption and thermodynamic study of xanthate, dithiophosphate and dithiocarbamate on galena and pyrite surfaces. Minerals Engineering, 46-47, 136-143.
  • YEKELER, H., YEKELER, M., 2004. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling. Applied Surface Science, 236, 435-443.
  • YEKELER, H., YEKELER, M., 2006. Predicting the efficiencies of 2-mercaptobenzothiazole collectors used as chelating agents in flotation processes: a density-functional study. Journal of Molecular Modeling, 12, 763-768.
  • RRUFF DATABASE, 2011. Chrysocolla R060547. http://rruff.info/chrysocolla/R060547.
  • ZHANG, L., 1994. Electrochemical equilibrium diagrams for sulphidization of oxide copper minerals. Minerals Engineering, 7, 927-932.
  • BESSIÈRE, J., HOUSNI, A. E., 1991. Dielectric study of activation and deactivation of malachite by sulfide ions. International Journal of Mineral Processing, 33, 165-183.
  • LEIPOLDT, J. G., COPPENS, P., 2002. Correlation between structure- and temperature-dependent magnetic behavior of iron dithiocarbamate complexes. Crystal structure of tris(N,N diethyldithiocarbamato)iron(III) at 297.deg. and 79.deg.K. Inorganic Chemistry, 12, 2269-2274.
  • GANGULI, P., MARATHE, V. R., MITRA, S., 2002. Paramagnetic anisotropy and electronic structure of S = 3/2 halobis(diethyldithiocarbamato)iron(III). I. Spin-Hamiltonian formalism and ground-state zero-field splittings of ferric ion. Inorganic Chemistry, 14, 970-973.
  • LUCA, G., GARCIA-RAMOS, J. V., CONCEPCIÓN, D., SANTIAGO, S. C., 2006. Functionalization of Ag nanoparticles with dithiocarbamate calix[4]arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir the Acs Journal of Surfaces & Colloids, 22, 10924-10926.
  • LIU, S., ZHONG, H., LIU, G., XU, Z., 2017, Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2- oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. Journal of Colloid & Interface Science, 512, 701.
  • GRIFT, C. J. G. V. D., GEUS, J. W., KAPPERS, M. J., MAAS, J. H. V. D., 1989. Characterization of copper-silica catalysts by means of in Situ diffuse reflectance infrared Fourier transform spectroscopy. Catalysis Letters, 3, 159-168.
  • LIU, G., HUANG, Y., QU, X., XIAO, J., YANG, X., XU, Z., 2016. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation.Colloids & Surfaces A Physicochemical & Engineering Aspects, 503, 34-42.
  • SZARGAN, R., SCHAUFUß, A., ROßBACH, P., 1999. XPS investigation of chemical states in monolayers : Recent progress in adsorbate redox chemistry on sulphides. Journal of Electron Spectroscopy & Related Phenomena, 100, 357-377.
  • HAN, S., KONG, M., YING, G., WANG, M., 2009. Synthesis of copper indium sulfide nanoparticles by solvothermal method. Materials Letters, 63, 1192-1194.
  • ACRES, R. G., HARMER, S. L., BEATTIE, D. A., 2010. Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite. Minerals Engineering, 23, 928-936.
  • CHEN, X., PENG, Y., BRADSHAW, D., 2014. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Minerals Engineering, 58, 64-72.
  • SMART, R. S. C., SKINNER, W. M., GERSON, A. R., 2015. XPS of sulphide mineral surfaces: metal ‐deficient, polysulphides, defects and elemental sulphur. Surface & Interface Analysis, 28, 101-105
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e45233e-29df-48e7-89b1-4d28f2b88f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.