PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Presence of Microplastics and Mineral Matter in Biomass used for Anaerobic Digestion of Food and Kitchen Waste as Evidenced by FTIR ATR Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Obecność mikroplastików i substancji mineralnych w biomasie wykorzystywanej do fermentacji metanowej odpadów spożywczych i kuchennych, wykazana za pomocą spektroskopii FTIR ATR
Języki publikacji
EN
Abstrakty
EN
Anaerobic digestion of food and kitchen waste is becoming key source of renewable energy, green chemicals and organic fertilizers. However, contamination of the organic fraction with microplastics, usually originating from packaging, requires frequent recognition of the biomass feedstock quality. In our investigation, material identification of biowaste containing polymers and biopolymers was performed using Fourier Transform Infrared (FTIR) spectroscopy. Analysis of selectively collected municipal bio-waste revealed contamination with conventional plastics, while biodegradable plastics were less frequent. FTIR spectra indicated the plant-based nature of the biomass feedstock and, despite spectral complexity, provided satisfactory insights into the organic-to-mineral compounds quantitative ratio, which has practical value in biomass characterization.
PL
Fermentacja metanowa odpadów spożywczych i kuchennych staje się kluczowym źródłem energii odnawialnej, zielonych chemikaliów i nawozów organicznych. Jednak zanieczyszczenie frakcji organicznej mikroplastikami, zwykle pochodzącymi z opakowań, wymaga częstego rozpoznawania jakości surowca biomasowego. W naszych badaniach identyfikacja materiałowa bioodpadów zawierających polimery i biopolimery została przeprowadzona przy użyciu spektroskopii w podczerwieni z transformacją Fouriera (FTIR). Analiza selektywnie zebranych bioodpadów komunalnych wykazała zanieczyszczenie konwencjonalnymi tworzywami sztucznymi, podczas gdy tworzywa sztuczne biodegradowalne były rzadsze. Widma FTIR wskazały na roślinny charakter bioodpadów i, pomimo złożoności widmowej, dostarczyły zadowalających spostrzeżeń na temat ilościowego stosunku związków organicznych do mineralnych, co ma praktyczne znaczenie w charakterystyce biomasy.
Rocznik
Strony
art. no. 89
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
  • Department of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
autor
  • Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
Bibliografia
  • 1. F. Bandini, E. Taskin, G. Bellotti, F. Vaccari, C. Misci, M. Chiara Guerrieri, P. Sandro Cocconcelli and E. Puglisi, The treatment of the organic fraction of municipal solid waste (OFMSW) as a possible source of micro- and nano-plastics and bioplastics in agroecosystems: a review. Chem. Biol. Technol. Agric., 2022, 9, 4, https://doi.org/10.1186/s40538-021-00269-w.
  • 2. G. Bekiaris, S. Bruun, C. Peltre, S. Houot, L. S. Jensen, FTIR–PAS: A powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Management, 2015, 39, 45-56, https://doi.org/10.1016/j.wasman.2015.02.029.
  • 3. J. Brusselaers, A. Van Der Linden, Bio-waste in Europe — turning challenges into opportunities, EEA Report; Vol. 2020, No. 4, European Environment Agency, https://www.eea.europa.eu/publications/bio-waste-in-europe.
  • 4. C. Campanale, I. Savino, C. Massarelli and V. F. Uricchio, Fourier Transform Infrared Spectroscopy to Assess the Degree of Alteration of Artificially Aged and Environmentally Weathered Microplastics. Polymers (Basel), 2023, 15, 911, https://doi.org/10.3390/polym15040911.
  • 5. Y. Chen, D. Wen, J. Pei, Y. Fei, D. Ouyang, H. Zhang and Y. Luo, Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects, Curr. Opin. Environ. Sci. Health, 2020, 18, 14-19, https://doi.org/10.1016/j.coesh.2020.05.004.
  • 6. S. Cichosz and A. Masek, IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials (Basel), 2020, 13, 4573, https://doi.org/10.3390/ma13204573.
  • 7. W. Czekała, Selective Collection and Management of Biowaste from the Municipal Sector in Poland: A Review. Appl. Sci., 2023, 13, 11015, https://doi.org/10.3390/app131911015.
  • 8. R. Ellerbrock, M. Stein and J. Schaller, Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep., 2022, 12, 11708. https://doi.org/10.1038/s41598-022-15882-4.
  • 9. D. Gere and T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test., 2020, 81, 106160, https://doi.org/10.1016/j.polymertesting.2019.106160.
  • 10. J. Kiefer, A. Stärk, A. L. Kiefer and H. Glade, Infrared Spectroscopic Analysis of the Inorganic Deposits from Water in Domestic and Technical Heat Exchangers. Energies, 2018, 11, 798, https://doi.org/10.3390/en11040798.
  • 11. N. Koca, L. E. Rodriguez-Saona, W. J. Harper, V. B. Alvarez, Application of Fourier Transform Infrared Spectroscopy for Monitoring Short-Chain Free Fatty Acids in Swiss Cheese. J. Dairy Sci., 2007, 90, 3596-3603, https://doi.org/10.3168/jds.2007-0063.
  • 12. A. Saravanan, S. Karishma, P. Senthil Kumar and Gayathri Rangasamy, A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel, 2023, 338, 127221, https://doi.org/10.1016/j.fuel.2022.127221.
  • 13. G, R. Sauer and Roy E. Wuthier, Fourier Transform Infrared Characterization of Mineral Phases Formed during Induction of Mineralization by Collagenase-released Matrix Vesicles in Vitro. J. Biol. Chem., 1988, 263, 13718-13724.
  • 14. T. Steiner, J. N. Möller, M. G. J. Löder, F. Hilbrig, C, Laforsch and R. Freitag, Microplastic Contamination of Composts and Liquid Fertilizers from Municipal Biowaste Treatment Plants: Effects of the Operating Conditions. Waste Biomass Valor., 2023, 14, 873–887, https://doi.org/10.1007/s12649-022-01870-2.
  • 15. J. J. G. van Soest, H. Tournois, D. de Wit, J. F. G. Vliegenthart, Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Res., 1995, 279, 201-214, https://doi.org/10.1016/0008-6215(95)00270-7.
  • 16. K. Sujka, P. Koczoń, A. Ceglińska, M. Reder, and H. Ciemniewska-Żytkiewicz, The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. J. Anal. Methods Chem., 2017, 4315678, http://dx.doi.org/10.1155/2017/4315678.
  • 17. F. J. Warren, M. J. Gidley, B. M. Flanagan, Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydrate Polym., 2016, 139, 35-42, https://doi.org/10.1016/j.carbpol.2015.11.066.
  • 18. N. Weithmann, J.N. Möller, M.G.J. Löder, S. Piehl, C. Laforsch and R. Freitag, Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv., 2018, 4, eaap8060.
  • 19. F. R. van de Voort, J. Sedman, G. Emo, A. A. Ismail, A Rapid FTIR quality control method for fat and moisture determination in butter. Food Res. Int., 1992, 25, 193-198, https://doi.org/10.1016/0963-9969(92)90137-T.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e420e30-2167-434c-a157-78f075f67341
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.