Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Present paper addresses the formulation of delamination-fretting wear failure predictive equation in HAp-Ti-6Al-4V interface of hip arthroplasty femoral stem component using multiple linear regression model. Design/methodology/approach: A finite element computational model utilising adaptive meshing algorithm via ABAQUS/Standard user subroutine UMESHMOTION is developed. The developed FE model is employed to examine effect of different HAp-Ti-6Al-4V interface mechanical and tribological properties on delamination-fretting wear behaviour. The FE result is utilised to formulate predictive equations for different stress ratio conditions using multiple linear regression analysis. Findings: Delamination-fretting wear predictive equations are successfully formulated with significant goodness of fit and reliability as a fast failure prediction tool in HAp coated hip arthroplasty. The robustness of predictive equations is validated as good agreement is noted with actual delamination-fretting wear results. Research limitations/implications: The influence of different mechanical and tribological properties such as delamination length, normal loading, fatigue loading, bone elastic modulus and cycle number under different stress ratio on delamination-fretting wear failure is analysed to formulate failure predictive equations. Practical implications: The formulated predictive equation can serve as a fast delamination-fretting wear failure prediction tool in hip arthroplasty femoral stem component. Originality/value: Limited attempt is done to explore the potential of utilizing multiple linear regression model to predict failures in hip arthroplasty. Thus, present study attempt to formulate delamination-fretting wear failure predictive equation in HAp -Ti-6Al-4V interface of hip arthroplasty femoral stem component using multiple linear regression model.
Wydawca
Rocznik
Tom
Strony
76--85
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- School of Computer Science and Engineering, Faculty of Innovation and Technology, Taylor’s University, Taylor’s Lakeside Campus, Subang Jaya, Selangor, Malaysia
autor
- School of Engineering, UOW Malaysia KDU University College, Shah Alam, Selangor, Malaysia
autor
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
autor
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
Bibliografia
- [1] Y. Otsuka, Y. Miyashita, Y. Mutoh, Effects of delamination on fretting wear behaviors of plasma-sprayed hydroxyapatite coating, Mechanical Engineering Journal 3/2 (2016) 15-00573. DOI: https://doi.org/10.1299/mej.15-00573
- [2] S.E. Graves, D. Davidson, L. Ingerson, P. Ryan, E.C. Griffith, B.F. McDermott, N.L. Pratt, The Australian orthopaedic association national joint replacement registry, Medical Journal of Australia 180/5S (2004) S31-S34. DOI: https://doi.org/10.5694/j.1326-5377.2004.tb05911.x
- [3] Australian Orthopaedic Association National Joint Replacement Registry: Automated Industry Reporting System, Adelaide, 2019.
- [4] W.A. Siswanto, M. Nagentrau, A.M. Tobi, M.N. Tamin, Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis, Journal of Mechanical Science and Technology 30/11 (2016) 5093-5101. DOI: https://doi.org/10.1007/s12206-016- 1027-3
- [5] M. Nagentrau, W.A. Siswanto, M. Tobi, A. Latif, Predicting the sliding amplitude of plastic deformation in the reciprocating sliding contact, ARPN Journal of Engineering and Applied Sciences 11/4 (2016) 2266- 2271.
- [6] Y. Otsuka, H. Kawaguchi, Y. Mutoh, Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid, Materials Science and Engineering: C 67 (2016) 533-541. DOI: https://doi.org/10.1016/j.msec.2016.05.058
- [7] Y. Otsuka, D. Kojima, Y. Mutoh, Prediction of cyclic delamination lives of plasma-sprayed hydroxyapatite coating on Ti–6Al–4V substrates with considering wear and dissolutions, Journal of the Mechanical Behavior of Biomedical Materials 64 (2016) 113-124. DOI: https://doi.org/10.1016/j.jmbbm.2016.07.026
- [8] M. Nagentrau, A.L.M. Tobi, S. Jamian, Y. Otsuka, Contact slip prediction in HAp coated artificial hip implant using finite element analysis, Mechanical Engineering Journal 6/3 (2019) 18-00562. DOI: https://doi.org/10.1299/mej.18-00562
- [9] M. Nagentrau, A.L.M. Tobi, S. Jamian, Y. Otsuka, HAp Coated Hip Prosthesis Contact Pressure Prediction Using FEM Analysis, Materials Science Forum 991 (2020) 53-61. DOI: https://doi.org/10.4028/www.scientific.net/MSF.991.53
- [10] M. Nagentrau, A.L.M. Tobi, S. Jamian, Y. Otsuka, R. Hussin, Delamination-fretting wear failure evaluation at HAp-Ti-6Al–4V interface of uncemented artificial hip implant, Journal of the Mechanical Behavior of Biomedical Materials 122 (2021) 104657. DOI: https://doi.org/10.1016/j.jmbbm.2021.104657
- [11] K. Fallahnezhad, R.H. Oskouei, H. Badnava, M. Taylor, The influence of assembly force on the material loss at the metallic head-neck junction of hip implants subjected to cyclic fretting wear, Metals 9/4 2019 422. DOI: https://doi.org/10.3390/met9040422
- [12] T. Bitter, I. Khan, T. Marriott, E. Lovelady, N. Verdonschot, D. Janssen, Finite element wear prediction using adaptive meshing at the modular taper interface of hip implants, Journal of the Mechanical Behavior of Biomedical Materials 77 (2018) 616-623. DOI: https://doi.org/10.1016/j.jmbbm.2017.10.032
- [13] A. Chakraborty, D. Goswami, Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN), Arabian Journal of Geosciences 10/17 (2017) 385. DOI: https://doi.org/10.1007/s12517-017-3167-x
- [14] I. Yimaz, A.G. Yuksek, An example of artificial neural network (ANN) application for indirect estimation of rock parameters, Rock Mechanics and Rock Engineering 41/5 (2008) 781-795. DOI: https://doi.org/10.1007/s00603-007-0138-7
- [15] B. Pradhan, Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia, Advances in Space Research 45/10 (2010) 1244-1256. DOI: https://doi.org/10.1016/j.asr.2010.01.006
- [16] P. Boye, The Use of Multiple Linear Regressions in Determining the Relationship between Housing Unit Price and Some Major Components in a Real Estate Building, Scottish Journal of Arts, Social Sciences, and Scientific Studies 7 (2012) 3-17.
- [17] C. Petroutsatou, S. Lambropoulos, J.P. Pantouvakis, Road tunnel early cost estimates using multiple regression analysis, Operational Research 6/3 (2006) 311-322. DOI: https://doi.org/10.1007/BF02941259
- [18] P. Surajit, G. Kumar, Multi-response optimization using multiple regression-based weighted signal-to- noise ratio, Quality Engineering 22/4 (2010) 336-350. DOI: https://doi.org/10.1080/08982112.2010.495368
- [19] B.P. Chang, H.M. Akil, R.B. Nasir, A. Khan, Optimization on wear performance of UHMWPE composites using response surface methodology, Tribology International 88 (2015) 252-262. DOI: https://doi.org/10.1016/j.triboint.2015.03.028
- [20] T. Catalina, V. Iordache, B. Caracaleanu, Multiple regression model for fast prediction of the heating energy demand, Energy and Buildings 57 (2013) 302-312. DOI: https://doi.org/10.1016/j.enbuild.2012.11.010
- [21] H. Singh, R. Garg, Effects of process parameters on material removal rate in WEDM, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 70-74.
- [22] P. Šimeček, D. Hajduk, Prediction of mechanical properties of hot rolled steel products, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 395-398.
- [23] B. Smoljan, D. Iljkić, N. Tomašić, Computer simulation of mechanical properties of quenched and tempered steel specimen, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 155-159.
- [24] S. Delijaicov, A T. Fleury, F.P.R. Martins, Application of multiple regression and neural networks to synthesize a model for peen forming process planning, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 651-656.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e41c290-f763-4e10-8aeb-2cc6c2281b20