Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed of the effect of the moisture content of the surface layer of tailings on the emissions of solid suspended matter, as well as on the study of the efficiency of dust emission by aqueous dispersions of poloxamer. The dust suppression capacity was assessed by comparing the dust concentrations generated in the dust suppression bunker space as a result of the air flow action on untreated and dust suppressant treated samples. In an experiment on sand samples from the copper-molybdenum ore beneficiation tailings, it was found that a 2% poloxamer solution provides dust suppression efficiency of up to 98% and retains moisture in the samples for at least 14 days. These data are of interest for the creation and implementation of effective methods for managing pollution from tailings of the mining and processing complex and in other industrial sectors.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
280--289
Opis fizyczny
Bibliogr. 48 poz., fig., tab.
Twórcy
autor
- Department of Occupational Health and Safety, Erdenet Mining Corporation, Erdenet, Mongolia
autor
- Faculty of Environmental Engineering and Energy, Lublin University of Technology, ul. Nadbystrzycka 38d, 20‑618 Lublin, Poland
autor
- Department of Geoecology, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
autor
- Research Center “Ekosistema”, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
Bibliografia
- 1. Khademi H., Abbaspour A., Martínez-Martínez S., Gabarrón M., Shahrokh V., Faz A., Acosta J. A. Provenance and environmental risk of windblown materials from mine tailing ponds, Murcia, Spain. Environmental pollution. 2018; 241: 432–440. https://doi.org/10.1016/j.envpol.2018.05.084.
- 2. Pashkevich M.A., Alekseenko A.V., Nureev R.R. Environmental damage from the storage of sulfide ore tailings. Journal of Mining Institute. 2023; 260: 155–167. https://doi.org/10.31897/PMI.2023.32.
- 3. Kamanina I.Z., Kaplina S.P., Gustova M.V., Chigoeva D.N., Vinogradov I.I. Analysis of atmospheric deposition in the territory of the Republic of North Ossetia-Alania by biomonitoring data. South of Russia: ecology, development. 2023; 18(1): 157–168. https://doi.org/10.18470/1992-1098-2023-1-157-168.
- 4. Kosheleva N.E., Kasimov N.S., Timofeev I.V. Potentially toxic elements in urban soil catenas of W-Mo (Zakamensk, Russia) and Cu-Mo (Erdenet, Mongolia) mining areas. Journal of soils and sediments. 2018; 18: 2318–2334. https://doi.org/10.1007/s11368-017-1897-8.
- 5. Nassiri O., Rhoujjati A., Moreno-Jimenez E., Hachimi M.L.E. Environmental and geochemical characteristics of heavy metals in soils around the former mining area of Zeïda (High Moulouya, Morocco). Water, Air, & Soil Pollution. 2023; 234(2): 110. https://doi.org/10.1007/s11270-023-06103-3.
- 6. Freitas J.C.E., De Resende C.F., de Paula Pimenta M., Frattini L.M., Reis P.R.C., Miranda J.B., Da Silva J.C.J., César D.E., Nery F.C., Peixoto P.H.P. Assessing the ecophysiological effects of iron mining tailings on velvet bean: implications for growth limitations based on mineral composition and physicochemical properties of tailings-soil substrates. Brazilian Journal of Botany. 2023; 46(3): 715–729. https://doi.org/j.gloenvcha.2021.102361.
- 7. Babenko D.A., Pashkevich M.A. Study of the composition and properties of the copper ore processing tailings of PJSC Gaysky Mining and Processing Plant. Obogashchenie Rud. 2021; 2: 47–52. https://doi.org/10.17580/or.2021.02.08.
- 8. Kříbek B., Nyambe I., Sracek O., Mihaljevič M., Knésl I. Impact of mining and ore processing on soil, drainage and vegetation in the Zambian Copperbelt mining districts: a review. Minerals. 2023; 13(3): 384. https://doi.org/10.3390/min13030384.
- 9. Witten M.L., Chau B., Sáez E., Boitano S., Lantz R.C. Early life inhalation exposure to mine tailings dust affects lung development. Toxicology and applied pharmacology. 2019; 365: 124–132. https://doi.org/10.1016/j.taap.2019.01.009.
- 10. Santos A.D.S.E., Saraiva R.D.D.S., Oliveira A.P.N.D., Costa M.A., Alonzo H.G.A., Campolina D., André L.C., Peixoto S.V., Câmara V.M., Asmus C.I.R.F. Metal exposure in a child population after a mine tailings dam failure. Projeto Bruminha. Revista Brasileira de Epidemiologia. 2023; 26. https://doi.org/10.1590/1980-549720230017.
- 11. Liu J., Si W., Xiao Z., Tang R., Niu P., Fu Y., Shen W. Risks to human health of exposure to heavy metals through wheat consumption near a tailings dam in North China. Polish Journal of Environmental Studies. 2023; 32(4). https://doi.org/10.15244/pjoes/163442.
- 12. Moya P.M., Arce G.J., Leiva C., Vega A.S., Gutiérrez S., Adaros H., Muñoz L., Pastén P., Cortés S. An integrated study of health, environmental and socioeconomic indicators in a mining-impacted community exposed to metal enrichment. Environmental geochemistry and health. 2019; 41: 2505–2519. https://doi.org/10.1007/s10653-019-00308-4.
- 13. Nikulin A.N., Fedorova A.V., Buldakova E.G., Epifantsev K.V., Kudinov V.V. Increasing the efficiency of protective properties of filtering respirators by treating them with impregnating solutions. Mining informational and analytical bulletin (scientific and technical journal). 2022; 6(1): 174–186. https://doi.org/10.25018/0236_1493_2022_61_0_174.
- 14. Guo G., Song B., Xia D., Yang Z., Wang F. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed. Environmental geochemistry and health. 2018; 40: 2071–2086. https://doi.org/10.1007/s10653-018-0083-2.
- 15. Prosviryakova I.A., Shevchuk L.M. Hygienic assessment of PM10 and PM2.5 contents in the atmosphere and population health risk in zones influenced by emissions from stationary sources located at industrial enterprises. Health Risk Analysis. 2018; 2: 14–22. https://doi.org/10.21668/health.risk/2018.2.02.eng.
- 16. Kholodov A.S., Kirichenko K.Yu., Zadornov K.S., Golokhvast K.S. The impact of solid suspended particles of atmospheric air in populated areas on human health. Bulletin of Kamchatka State Technical University. 2019; 49: 81–88. https://doi.org/10.33396/1728-0869-2020-4-48-55.
- 17. Rodríguez-Chávez T.B., Rine K.P., Almusawi R.M., O’Brien-Metzger R., Ramírez-Andreotta M., Betterton E.A., Sáez A.E. Outdoor/indoor contaminant transport by atmospheric dust and aerosol at an active smelter site. Water, Air, & Soil Pollution. 2021; 232(6): 226. https://doi.org/10.1007/s11270-021-05168-2.
- 18. Jargalsaihan B., Orlova N.A., Suzdaleva A.L. Geoecological situation in the region of the Erdenet mining and processing facility (Mongolia). E3S Web of Conferences. EDP Sciences. 2023; 371: 03053. https://doi.org/10.1051/e3sconf/202337103053.
- 19. MNS 5850:2019 Mongolian Soil Quality Standard. Maximum Permissible Levels of Contaminants in Soil. https://estandard.gov.mn/standard/v/1300 (date of access: 01.04.24).
- 20. MNS 4586:1998. Mongolian Standard of Aquatic Environment Quality Indicator. General Requirements. https://estandard.gov.mn/standard/v/3394 (date of access: 01.04.24).
- 21. Yondonjamts J., Oyuntsetseg B., Bayanjargal O., Watanabe M., Prathumratana L., Kim K.W. Geochemical source and dispersion of copper, arsenic, lead, and zinc in the topsoil from the vicinity of Erdenet mining area, Mongolia. Geochemistry: Exploration, Environment, Analysis. 2019; 19(2): 110–120. https://doi.org/10.1144/geochem2018-025.
- 22. Sodnomdarjaa E., Lehmkuhl F., Karthe D., Knippertz M., Ganbat G. Assessment of soil loss using RUSLE around Mongolian mining sites: a case study on soil erosion at the Baganuur lignite and Erdenet copper–molybdenum mines. Environmental Earth Sciences. 2023; 82(9): 230. https://doi.org/10.21203/rs.3.rs-1513202/v1.
- 23. Jsaikhan B. Monitoring of the Erdenet tailings dam (Mongolia) // G35 Geoecological problems of the technogenic stage of the Earth’s history. 2021; 169.
- 24. Lkhagvajargal B., Batdelger B., Sonomdagva C., Bayarbat B., Atsushi M. Characteristics and concentration of white dust and the particulate matter (PM10) in Erdenet city, Mongolia. Mongolian Journal of Engineering and Applied Sciences. 2018; 1(1): 43–51. https://doi.org/10.22353/mjeas.v1i01.917.
- 25. MNS 4585:2016. Mongolian Air Quality Index Standard. General Requirements. https://estandard.gov.mn/standard/v/3377 (Access: 01.04.24).
- 26. Burke I.T., Courtney R., Mayes W.M. Antimony and arsenic behaviour in lead/zinc mine tailings during storage under vegetation cover. Applied Geochemistry. 2023; 158: 105806. https://doi.org/10.1016/j.apgeochem.2023.105806.
- 27. Krupskaya L.T., Ishchenko E.A., Golubev D.A., Kolobanov K.A., Rastanina N.K. Composition for reducing dust load on the ecosphere and reclamation of the surface of the tailings storage facility. Patent of the Russian Federation No. 2707030-C1, 2019.
- 29. Petrova T.A., Rudzisha E. Utilization of sewage sludge as an ameliorant for reclamation of technogenically disturbed lands. Journal of Mining Institute. 2021; 251: 767–776. https://doi.org/10.31897/PMI.2021.5.16.
- 29. Masloboev V.A., Svetlov A.V., Konina O.T., Mitrofanova G.V., Turtanov A.V., Makarov D.V. Selection of binding reagents to prevent dust formation at tailings of apatite-nepheline ore processing. Physical and Technical Problems of Mineral Development. 2018; 2: 161–171. https://doi.org/10.15372/FTPRPI20180218.
- 30. Lyashenko V.I., Gurin A.A. Justification of environmental technologies and means for dust suppression of surfaces of tailings of hydrometallurgical production. Mining information and analytical bulletin (scientific and technical journal). 2018; 9: 58–72. https://doi.org/10.25018/0236-1493-2018-9-0-58-72.
- 31. Borowski G., Smirnov Y., Ivanov A., Danilov A. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2022; 42(8): 2345–2356. https://doi.org/10.25018/0236_1493_2023_91_0_180.
- 32. Kondrasheva N.K., Kireeva E.V., Zyryanova O.V. Development of new compositions for dust control in the mining and mineral transportation industry. Journal of Mining Institute. 2021; 248: 272–280. https://doi.org/10.31897/PMI.2021.2.11.
- 33. Peng H., Nie W., Zhang S., Cheng W., Liu Q., Guo C., Ma Q., Zhou Z., Xu C., Hua Y., Zhang H. Research on negative pressure jet dust-removal water curtain technology for coal mine cleaner production. Fuel. 2022; 310: 122378. https://doi.org/10.1016/j.fuel.2021.122378.
- 34. Peng H., Nie W., Zhang X., Xu C., Meng X., Cheng W., Liy Q., Hua Y. Research on the blowing-spraying synergistic dust removal technology for clean environment in large-scale mechanization coal mine. Fuel. 2022; 324: 124508. https://doi.org/10.1016/j.fuel.2022.124508.
- 35. Patent of the Russian Federation №2643038-C1. Smirnov Yu.D., Pashkevich M.A., Kremcheev E.A., Nagornov D.O., Afanasiadi K.I. Method for reclamation of tailings storage facilities. 2018.
- 36. Kim K., Lee T., Kim M. Tailings storage facilities (TSFs) dust control using biocompatible polymers // Mining, Metallurgy & Exploration. 2019; 36: 785–795. https://doi.org/10.1007/s42461-019-0078-2.
- 37. Strizhenok A.V., Bykova M.V., Korotaeva A.E. Extractive industries as a source of greenhouse gas emissions and the possibility of its natural sequestration under the climatic conditions of Central and Northern Eurasia. Journal of Ecological Engineering. 2024; 25(5). https://doi.org/10.12911/22998993/185585.
- 38. Lee T., Kim S., Kim S., Kwon N.Y., Rho S., Hwang D.S., Kim M. Environmentally friendly methylcellulose-based binders for active and passive dust control. ACS Applied Materials & Interfaces. 2020; 12(45): 50860–50869. https://doi.org/10.1021/acsami.0c15249.
- 39. Nie W., Tian Q., Niu W., Bao Q., Yuan M., Zhou W., Yu F., Yan X. Carboxymethyl cellulose sodium gel: A modified material used to suppress coal dust pollution. Environmental Research. 2022; 215: 114234. https://doi.org/10.1016/j.envres.2022.114234.
- 40. Sieger J.L., Lottermoser B.G., Freer J. Effectiveness of protein and polysaccharide biopolymers as dust suppressants on mine soils: Large-scale field trials. Mining. 2023; 3(3): 428–462. https://doi.org/10.3390/mining3030026.
- 41. Sieger J.L., Lottermoser B.G., Freer J. Effectiveness of protein and polysaccharide biopolymers as dust suppressants on mine soils: Results from wind tunnel and penetrometer testing. Applied Sciences. 2023; 13(7): 4158. https://doi.org/10.3390/app13074158.
- 42. Sieger J.L., Lottermoser B.G., Freer J. Evaluation of protein and polysaccharide biopolymers as dust suppressants on mine soils: Laboratory experiments. Applied Sciences. 2023; 13(2): 1010. https://doi.org/10.3390/app13021010.
- 43. Zhao J.K., Wei Z.A., Yang Y.H., Lu T., Wang W.S., Li S.L. Control of dust from tailings pond using conventional halides and polymer materials. Chinese Journal of Engineering. 2021; 43(4): 486–494. https://doi.org/10.13374/j.issn2095-9389.2020.04.23.002.
- 44. Kornev A.V., Korshunov G.I., Kudelas D. Reduction of dust in the longwall faces of coal mines: problems and perspective solutions. Acta Montanistica Slovaca. 2021; 26(1). https://doi.org/10.46544/AMS.v26i1.07.
- 45. Zhang Q., Wang H., Han H., Zhao X., Li X., Wang Y. Experimental study on improving salt resistance of dust suppressing foam with polymers. Fuel. 2023; 353: 129036. https://doi.org/10.1016/j.fuel.2023.129036.
- 46. Argimbaev K.R., Ligotsky D.N., Mironova K.V., Loginov E.V. Investigations on material composition of iron-containing tails of enrichment of combined mining and processing in Kursk magnetic anomaly of Russia. International Journal of Engineering. 2020; 33(7): 1431–1439. https://doi.org/10.5829/IJE.2020.33.07A.31.
- 47. Kolesnikova O., Vasilyeva N., Kolesnikov A., Zolkin A. Optimization of raw mix using technogenic waste to produce cement clinker. Mining informational and analytical bulletin (scientific and technical journal). 2022; 10(1): 103–115. https://doi.org/10.25018/0236_1493_2022_101_0_103.
- 48. Lee T., Park J., Knoff D.S., Kim K., Kim M. Liquid amphiphilic polymer for effective airborne dust suppression. RSC Advances. 2019; 9(68): 40146–40151. https://doi.org/10.1039/c9ra06787f.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3f113a-9a39-4b4d-b445-3b9646dfd5bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.