Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Every change in the bottle geometry as well as every change of physical and rheological properties posesa risk of excessive gas entrainment during a filling process. To maintain satisfactory filling efficiencythere is a need to optimise this process with respect to all adverse phenomena which affect the fluidflow, such as spluttering on the bottom, air caverns formation and air entrainment with incoming liquid.This paper comprises numerical simulations of two filling methods. The first method involves dosingwith a pipe placed over the free liquid surface of a fully filled bottle. The second method covers fillingwith a pipe located near the bottom. Moreover, the influence of rheological properties and surfacetension values is considered. The comprehensive analysis of amount of entrained air represented byair volume fraction in dispensed liquid let the authors define the influence of filling speed on themechanism and amount of entrapped air.
Czasopismo
Rocznik
Tom
Strony
143--–163
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1,00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1,00-645 Warsaw, Poland
Bibliografia
- 1. Al-Anzi B.S., 2020. Effect of primary variables on a confined plunging liquid jet reactor. Water, 12, 764. DOI: 10.3390/w12030764.
- 2. Bailey A.F.G., 2005. The concentration of aqueous solutions by osmotic distillation (OD). MSc thesis, Queensland University of Technology.
- 3. Biń A.K., 1988. Minimum air entrainment velocity of vertical plunging liquid jets. Chem. Eng. Sci., 43, 379–380. DOI: 10.1016/0009-2509(88)85051-6.
- 4. Biń A.K., 1993. Gas entrainment by plunging liquid jets. Chem. Eng. Sci., 48, 3585–3630. DOI: 10.1016/0009- 2509(93)81019-R.
- 5. Boualouache A., Zidouni F., Mataoui A. 2018. Numerical visualization of plunging water jet using Volume of Fluid Model. J. Appl. Fluid Mech., 11, 95–105. DOI: 10.29252/jafm.11.01.27861.
- 6. Brandt M.J., Johnson K.M., Elphinston A.J., Ratnayaka D.D., 2017. Twort’s Water Supply. 7th edition, ButterworthHeinemann, 581–619. DOI: 10.1016/B978-0-08-100025-0.00014-4.
- 7. Chanson H., Aoki S., Hoque A., 2004. Physical modeling and similitude of air bubble entrainment at vertical circular plunging jets. Chem. Eng. Sci., 59, 747–758. DOI: 10.1016/j.ces.2003.11.016.
- 8. Cruickshank J.O., 1988. Low-Reynolds-number instabilities in stagnating jet flows. J. Fluid Mech., 193, 111–127. DOI: 10.1017/S0022112088002071.
- 9. Fellows P.J., 2009. Food processing technology – Principles and practice. 3r d ed., Woodhead Publishing Limited and CRC Press LLC, Cambridge, 782–785. DOI: 10.1533/9781845696344.
- 10. Lahey Jr. R.T., 2009. On the direct numerical simulation of two-phase flows. Nucl. Eng. Des., 239, 867–879. DOI: 10.1016/j.nucengdes.2008.06.020.
- 11. Laux H., Johansen S.T., Berg H., Klevan O.S., 2000. CFD analysis of the turbulent flow in ladles and the alloying process during tapping of steel furnaces. Scand. J. Metall., 29, 71–80. DOI: 10.1034/j.1600-0692.2000.d01-8.x.
- 12. Makowski Ł., Bałdyga J., 2011. Large eddy simulation of mixing effects on the course of parallel chemical reactions and comparison with k-ε modeling. Chem. Eng. Process. Process Intensif., 50, 1035–1040. DOI: 10.1016/j.cep.2011.06.003.
- 13. Makowski Ł., Orciuch W., Bałdyga J., 2012. Large eddy simulations of mixing effects on the course of precipitation process. Chem. Eng. Sci., 77, 85–94. DOI: 10.1016/j.ces.2011.12.020.
- 14. Matice C.J., 1997. Simulation of high speed filling. Stress Engineering Services, Inc., Cincinnati, Ohio, 4–5, 9.
- 15. Pai M., Bermejo-Moreno I., Desjardins O., Pitsch H., 2009. Role of Weber number in the primary breakup of liquid jets in crossflow. Center of Turbulence Research, Annual Research Briefs, 145–158.
- 16. Ren J., Ouyang J., Yang B., Jiang T., Mai H., 2011. Simulation of container filling process with two inlets by improved smoothed particle hydrodynamics (SPH) method. Int. J. Comput. Fluid Dyn., 25, 365–386. DOI: 10.1080/10618562.2011.603308.
- 17. Roberts S.A., Rao R.R., 2011. Numerical simulations of mounding and submerging flows of shear-thinning jets impinging in a container. J. Non-Newtonian Fluid Mech., 166, 1100–1115. DOI: 10.1016/j.jnnfm.2011.06.006.
- 18. Sanjay V., Das A.K., 2017. On air entrainment in a water pool by impingement of a jet. AIChE J., 63, 5169–5181. DOI: 10.1002/aic.15828.
- 19. Tomé M.F., Mckee S., Barratt L., Jarvis D.A., Patrick A.J., 1999. An experimental and numerical investigation of container filling with viscous liquids. Int. J. Numer. Methods Fluids, 31, 1333–1353. DOI: 10.1002/(SICI)1097- 0363(19991230)31:8<1333::AID-FLD932>3.0.CO;2-R.
- 20. Van De Donk J., 1981. Water aeration with plunging jets. Ph.D. Thesis, TU Delft, the Netherlands, 168. Venard J.K., Street R. L., 1975. Elementary fluids mechanics, 5th edition, Wiley, New York. DOI: 10.1017/S002211 2063210124.
- 21. Wojtas K., Makowski Ł., Orciuch W., 2020. Barium sulfate precipitation in jet reactors: large eddy simulations, kinetics study and design considerations. Chem. Eng. Res. Des., 158, 64–76. DOI: 10.1016/j.cherd.2020.03.019.
- 22. Wroński S., Pohorecki R., Siwiński J., 1979. Przykłady obliczeń z termodynamiki i kinetyki procesów inżynierii chemicznej. Wydawnictwo Naukowo-Techniczne, Warszawa, 307.
- 23. Zhu Y., Oğuz H., Prosperetti A., 2000. On the mechanism of air entrainment by liquid jets at a free surface. J. Fluid Mech., 404, 151–177. DOI: 10.1017/S0022112099007090.
- 24. Zuritz C.A., Munoz Puntes E., Mathey H.H., Perez E.H., Gascon A., Rubio L.A., Carullo C.A., Chernikoff R.E., Cabeza M.S., 2005. Density, viscosity and coefficient of thermal expansion of clear grap juice at different soluble solids concentrations and temperatures. J. Food Eng., Elsevier, Argentina, 1–7. DOI: 10.1016/j.jfoodeng.2004. 10.026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3f0119-d457-4173-a21c-77d06c9fc932