PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of numerical simulations of blood flow through the segment of an artery in the presence of stenosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model is developed to study the characteristics of blood flowing through an arterial segment in the presence of a single and a couple of stenoses. The governing equations accompanied by an appropriate choice of initial and boundary conditions are solved numerically by Taylor Galerkin’s time-stepping equation, and the numerical stability is checked. The pressure, velocity, and stream functions have been solved by Cholesky’s method. Furthermore, an in-depth study of the flow pattern reveals the separation of Reynolds number for the 30 and 50% blockage of single stenosis and 30% blockage of multi-stenosis. The present results predict the excess pressure drop across the stenosis site than it does for the inlet of the artery with single and multiple stenosis and the increase in the velocity is observed at the center of the artery.
Rocznik
Strony
49--61
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Sindh, Pakistan
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Sindh, Pakistan
  • Department of Mathematics, Near East University Mersin, Turkey
autor
  • Department of Mathematics, Near East University Mersin, Turkey
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Sindh, Pakistan
  • Department of Mathematics, Near East University Mersin, Turkey
  • Department of Computer Science and Mathematics, Lebanese American University Beirut, Lebanon
Bibliografia
  • [1] Chatterjee, A., Changdar, S., & De, S. (2020). Study of nanoparticle as a drug carrier through stenosed arteries using Bernstein polynomials. International Journal for Computational Methods in Engineering Science and Mechanics, 21(5), 243-251.
  • [2] Hussain, A., Sarwar, L., Rehman, A., Al Mdallal, Q., Almaliki, A.H., & El-Shafay, A.S. (2022). Mathematical analysis of hybrid mediated blood flow in stenosis narrow arteries. Scientific Reports, 12(1), 12704.
  • [3] Shaikh, A., & Chandio, M. (2014). Computation of blood flow separation and reattachment length on Stenosed artery using Finite Element Method. Sindh University Research Journal-SURJ (Science Series), 46(4).
  • [4] Kumar, H., & Chandel, R. (2014). A non-Newtonian arterial blood flow model through multiple stenosis. International Journal of Latest Research in Science and Technology, 3(3), 116-121.
  • [5] Changdar, S., & De, S. (2017). Analytical solution of mathematical model of magnetohydrodynamic blood nanofluid flowing through an inclined multiple stenosed artery. Journal of Nanofluids, 6(6), 1198-1205.
  • [6] Changdar, S., & De, S. (2015). Numerical simulation of nonlinear pulsatile Newtonian blood flow through a multiple stenosed artery. International Scholarly Research Notices, 2015, 628605.
  • [7] Changdar, S., & De, S. (2019). Analytical investigation of nanoparticle as a drug carrier suspended in a MHD blood flowing through an irregular shape stenosed artery. Iranian Journal of Science and Technology, Transactions A: Science, 43, 1259-1272.
  • [8] Dolui, S., Bhaumik, B., & De, S. (2023). Combined effect of induced magnetic field and thermal radiation on ternary hybrid nanofluid flow through an inclined catheterized artery with multiple stenosis. Chemical Physics Letters, 811, 140209.
  • [9] Srivastav, K. (2015). Two-Layered Model of blood flow through arterial catheterization with non-symmetric constriction. Journal of Computation in Biosciences and Engineering, 2(2), 1-8.
  • [10] Gupta, A.K., & Agrawal, S.P. (2015). Computational modeling and analysis of the hydrodynamic parameters of blood through stenotic artery. Procedia Computer Science, 57, 403-410.
  • [11] Srivastava, N. (2014). Analysis of flow characteristics of the blood flowing through an inclined tapered porous artery with mild stenosis under the influence of an inclined magnetic field. Journal of Biophysics, 2014, 797142.
  • [12] Dolui, S., Bhaumik, B., De, S., & Changdar, S. (2023). Effect of a variable magnetic field on peristaltic slip flow of blood based hybrid nanofluid through a non-uniform annular channel. Journal of Mechanics in Medicine and Biology, 23, 2250070.
  • [13] Bhaumik, B., Changdar, S., & De, S. (2022). Combined impact of Brownian motion and thermophoresis on nanoparticle distribution in peristaltic nanofluid flow in an asymmetric channel. International Journal of Ambient Energy, 43(1), 5064-5075.
  • [14] Gaur, M., & Gupta, M.K. (2014). A Casson fluid model for the steady flow through a stenosed blood vessel. British Journal of Mathematics and Computer Sciences, 4(11), 1629-1641.
  • [15] Majchrzak, E., & Tarasek, D. (2011). Numerical analysis of heat transfer in countercurrent blood flow and biological tissue. Scientific Research of the Institute of Mathematics and Computer Science, 10(2), 143-153.
  • [16] Shaikh, A.A., & Qureshi, S. (2022). Comparative analysis of Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu integrals. Journal of Applied Mathematics and Computational Mechanics, 21(1), 91-101.
  • [17] Maayah, B., Moussaoui, A., Bushnaq, S., & Abu Arqub, O. (2022). The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach. Demonstratio Mathematica, 55(1), 963-977.
  • [18] Momani, S., Abu Arqub, O., & Maayah, B. (2020). Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard’s equation. Fractals, 28(08), 2040007.
  • [19] Maayah, B., Arqub, O.A., Alnabulsi, S., & Alsulami, H. (2022). Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme. Chinese Journal of Physics, 80, 463-483.
  • [20] Arqub, O.A., & Maayah, B. (2022). Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: Formulations and approximations. International Journal of Modern Physics B, 2350179.
  • [21] Arqub, O.A., Hayat, T., & Alhodaly, M. (2021). Reproducing kernel Hilbert pointwise numerical solvability of fractional Sine-Gordon model in time-dependent variable with Dirichlet condition. Physica Scripta, 96(10), 104005.
  • [22] Chorin, A.J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22, 104, 745-762.
  • [23] Fortin, M., & Esselaoui, D. (1987). A finite element procedure for viscoelastic flows. International Journal for Numerical Methods in Fluids, 7, 10, 1035-1052.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3d6302-ea45-4bbb-951a-93cb068e073c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.