PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elementy optyczne pracujące w widmowym zakresie obejmującym ultrafiolet próżniowy i miękkie promieniowanie rentgenowskie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Optical elements for the extreme ultraviolet and soft X-ray range
Języki publikacji
PL
Abstrakty
PL
W artykule zawarto podstawy fizyczne i przegląd elementów optycznych do pracy w zakresie obejmującym ultrafiolet próżniowy (eUV) oraz miękkie promieniowanie rentgenowskie (SXr). Pierwszy rozdział obejmuje wprowadzenie do analizowanej tematyki i podstawy fizyczne. W drugim rozdziale przedstawione zostały podstawy działania optyki związanej z zakresem eUV/SXr wraz z wyróżnieniem jej wad oraz zalet. W trzecim rozdziale szczegółowo omówiono elementy optyczne, takie jak: filtry optyczne, zwierciadła (m.in. wielowarstwowe), siatki dyfrakcyjne, płytki strefowe Fresnela oraz rozwiązania hybrydowe. rozdział czwarty przedstawia szeroki obszar zastosowań optyki eUV/SXr. W ostatnim rozdziale znajduje się podsumowanie przedstawionych wcześniej informacji.
EN
The article presents the physical basis and overview of optical elements for the range including extreme ultraviolet (eUV) and soft X-ray (SXr). The first chapter contains an introduction to the subject under review and physical fundamentals. The second chapter presents the basics of optics for the eUV/SXr range, along with highlighting its advantages and disadvantages. The third chapter discusses in detail optical components such as optical filters, mirrors (including multilayers), diffraction gratings, Fresnel zone plates, and hybrid solutions. The fourth chapter presents a wide range of applications of eUV/SXr optics. The final chapter summarises the information presented earlier.
Rocznik
Strony
49--83
Opis fizyczny
Bibliogr. 127 poz., rys., tab., wyk.
Twórcy
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Enoch J., First known lenses originating in Egypt about 4600 years ago!, Hindsight, 31, 2, 2000, 9-17.
  • [2] Hudec R., Maršíková V., Pína L., Inneman A., Skulinová M., New trends in space x-ray optics, Proc. SPIE 10565, International Conference on Space Optics - ICSO 2010, 105652U (20 november 2017), https://doi.org/10.1117/12.2309110.
  • [3] Zhou W., Apkarian R., Wang Z. L., Joy D., Fundamentals of Scanning Electron Microscopy (SEM), [in:] Zhou W., Wang Z. L. (eds), Scanning Microscopy for nanotechnology, Springer, New York, NY, 2006, https://doi.org/10.1007/978-0-387-39620-0_1.
  • [4] Xin Wang et al., The evolution of LiDAR and its application in high precision measurement, 2020 IOP Conf. Ser.: Earth Environ. Sci. 502 012008.
  • [5] Ray S.F., Applied Photographic Optics: Lenses and optical systems for photography, film, video, electronic and digital imaging, 3rd ed., Routledge 2002, https://doi.org/10.4324/9780080499253.
  • [6] ISO International Standard 21348: 2017, Space environment (natural and artificial) - Process for determining solar irradiances.
  • [7] Drescher L., Kornilov O., Witting t., reitsma G., Monserud n., rouzée a., Mikosch J., Vrakking M.J.J., Schütte B., Extreme-ultraviolet refractive optics, nature, 564, 2018, 91-94, https://doi.org/10.1038/s41586-018-0737-3.
  • [8] Attwood D., Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, Cambridge University Press, Cambridge 1999, https://doi.org/10.1017/CBO9781139164429.
  • [9] Kuhlmann T., Yulin S.A., Feigl T., Kaiser N., EUV multilayer mirrors with tailored spectral reflectivity, Proc. SPIE 4782, X-ray Mirrors, Crystals, and Multilayers II, 24 December 2002, https://doi.org/10.1117/12.451348.
  • [10] Compton A.H., Allison S.K., X-Rays in Theory and Experiment, 2nd. ed., Van Nostrand, New York, 1935.
  • [11] Huygens Ch., Traité de la lumiere, Leiden, netherlands: Pieter van der Aa, 1690.
  • [12] Hecht E., Optics, 4 th ed., Pearson education, Inc., 2002.
  • [13] Thompson A.R., Moran J.M., Swenson G.W. Jr, Van Cittert-Zernike Theorem, Spatial Coherence, and Scattering, [in:] Interferometry and Synthesis in radio astronomy, astronomy and astrophysics Library, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-44431-4_15.
  • [14] Chang Ch., Anderson E., Naulleau P., Gullikson E., Goldberg K., Attwood D., Direct measurement of index of refraction in the extreme-ultraviolet wavelength region with a novel interferometer, Optics Letters, 27, 12, 2002.
  • [15] Svatos J., Joyeux D., Phalippou D., Polack F., Soft-x-ray interferometer for measuring the refractive index of materials, Optics Letters, 18, 16, 1993, 1367-1369.
  • [16] The Center for X-ray Optics, X-Ray Interactions with Matter, https://henke.lbl.gov/optical_constants/index.html, [dostęp: 10.09.2022].
  • [17] Rigaku, Multilayer optics for extreme ultraviolet lithography, https://www.rigaku.com/products/optics/euv, [dostęp: 10.09.2022].
  • [18] Michette A.G., Optical systems for soft X rays, Plenum Press 1986.
  • [19] Wang Z., Wang H., Zhu J., Wang F., Gu Z., Chen L., Broadband multilayer polarizers for the extreme ultraviolet, Journal of applied Physics, 99, 2006, 056108, https://doi.org/10.1063/1.2179152.
  • [20] Schmahl G., Rudolph D., Schneider G., Thieme J., Schliebe T., Kaulich B., Hettwer M., Diffraction optics for X-ray imaging, Microelectronic engineering, 32, 1-4, 1996, 351-367.
  • [21] Goldberg K., Testing EUV optics with EUV light: if you can measure it, you can make it, SPIE Newsroom, Optical Design & Engineering, 2006.
  • [22] Zeng G., Daido H., Togawa T., Nakatsuka M., Nakai S., “Water window” x‐ray source produced by a slab glass laser, Journal of Applied Physics, 69, 7460, 1991, https://doi.org/10.1063/1.347561.
  • [23] Koerdel M., Dehlinger A., Seim Ch., Vogt U., Fogelqvist E., Sellberg J.A., Stiel H., Hertz H.M., Laboratory water-window X-ray Microscopy, Optica, 7, 6, 2020, 658-674.
  • [24] Born M., Wolf E., Principle of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press 1980.
  • [25] Jelinsky P., Martin Ch., Kimble R., Bowyer S., Steele G., Composite thin-foil bandpass filter for EUV astronomy: titanium-antimony-titanium, applied Optics, 22, 8, 1983, 1227-1231.
  • [26] Jimenez K., Nicolosi P., Juschkin L., Nadeem Ahmed, Gaballah A.E.H., Cattaruzza E., Sertsu M.G., Gerardino A., Giglia A., Mussler G., Zuppella P., Extreme ultraviolet freestanding transmittance filters for high brilliance sources, based on Nb/Zr and Zr/Nb thin films on Si3N4 membranes: Design, fabrication, optical and structural characterization, Thin Solid Films, 695, 2020, 137739, https://doi.org/10.1016/j.tsf.2019.137739.
  • [27] Keski-Kuha R., Osantowski J.F., Leviton D.B., Saha T., Wright G.A., Boucarut R.A., Fleetwood Ch.M., Madison T.J., CVD silicon carbide mirrors for EUV applications, Proc. SPIE 2543, Silicon Carbide Materials for Optics and Precision Structures, 23 October 1995, https://doi.org/10.1117/12.225286.
  • [28] Monaco G., Suman M., Pelizzo M. G., Nicolosi P., Optical constants of silicon carbide deposited with emerging PVD techniques, Proc. SPIE 7360, EUV and X-ray Optics: Synergy between Laboratory and Space, 73600W, 30 April 2009, https://doi.org/10.1117/12.820684.
  • [29] Gullikson E.M., Baker S.L., Bjorkholm J.E., Bokor J., Goldberg K.A., Goldsmith J.E.M., Montcalm C., Naulleau P.P., Spiller E.A., Stearns D.G., Taylor J.S, Underwood J.H., EUV scattering and flare of 10X projection cameras, Proc. SPIE 3676, Emerging Lithographic Technologies III, 25 June 1999, https://doi.org/10.1117/12.351162.
  • [30] Extreme Ultraviolet (EUV) Flat Mirrors, strona firmy Edmund Optics, https://www.edmundoptics.com/f/extreme-ultraviolet-euv-flat-mirrors/39087/, [dostęp: 10.09.2022].
  • [31] Barysheva M. M., Pestov A.E., Salashchenko N.N., Toropov M.N., Chkhalo N.I., Precision imaging multilayer optics for soft X-rays and extreme ultraviolet bands, Physics-Uspekhi, 55, 7, 2012.
  • [32] Frolov O., Kolacek K., Straus J., Schmidt J., Prukner V., Choukourov A., Application of EUV optics to surface modification of materials, Proc. SPIE 8777, Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III, 877707, 3 May 2013, https://doi.org/10.1117/12.2020158.
  • [33] Raimondi L., Svetina C., Mahne N., Cocco D., Abrami A. et al., Microfocusing of the FERMI@Elettra FEL beam with a K-B active optics system: Spot size predictions by application of the WISE code, nuclear Instruments and Methods in Physics research Section a: accelerators, Spectrometers, Detectors and Associated Equipment, 710, 2013, 131-138.
  • [34] Ragozin E.N., Mednikov K.N., Pertsov A.A., Pirozhkov A.S., Reva A.A., Shestov S.V., Ul’yanov A.S., Vishnyakov E.A., Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications, Proc. SPIE 7360, EUV and X-ray Optics: Synergy between Laboratory and Space, 73600n, 30 April 2009, https://doi.org/10.1117/12.820750.
  • [35] Rochus P., Halain J.-P., Renotte E., Berghmans D., Zhukov A. et al., The Extreme Ultraviolet Imager (EUI) onboard the SOLAR ORBITER mission, 2009, In a3. 4. Space-based astronomy.
  • [36] Wachulak P.W., Bartnik A., Skorupka M., Kostecki J., Jarocki R., Szczurek M., Węgrzyński Ł., Fok T., Fiedorowicz H., Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target, Appl. Phys. B, 111, 2013, 239-247, https://doi.org/10.1007/s00340-012-5324-y.
  • [37] Mimura H., Takei Y., Saito T., Kume T., Motoyama H., Egawa S., Takeo Y., Higashi T., Development of ellipsoidal focusing mirror for soft x-ray and extreme ultraviolet light, Proc. SPIE 9588, Advances in X-Ray/EUV Optics and Components X, 95880L, 26 August 2015, https://doi.org/10.1117/12.2187455.
  • [38] Bartnik A., Fiedorowicz H., Wachulak P., Fok T., Węgrzyński Ł., Optical systems for laser-produced plasma EUV and soft X-ray sources, Proc. SPIE 10976, 21st Czech - Polish – Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 109760K, 18 December 2018, https://doi.org/10.1117/12.2518202.
  • [39] Mangus J. D., Optical Design of Glancing Incidence Extreme Ultraviolet Telescopes, Appl. Opt., 9, 1970, 1019-1025.
  • [40] Störmer M., Horstmann Ch., Häussler D., Spiecker E., Siewert F., Scholze F., Hertlein F., Jäger W., Bormann R., Single-layer and multilayer mirrors for current and next-generation light sources, Proc SPIE. 7077, 2008, https://doi.org/10.1117/12.798895.
  • [41] NTT Advanced Technology Corporation, Multilayer Coating for Extreme Ultraviolet Experiments, 2020, http://www.ntt-at.com.
  • [42] Barysheva M., Garakhin S.A., Zuev S.Yu., Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Chkhalo N.I., Yulin S., Comparison of approaches to the manufacture of broadband mirrors for the EUV range: aperiodic and stack structures, Quantum Electronics, 49, 4, 2019, 380-385, https://doi.org/10.1070/QeL16990
  • [43] MacDonald C.A., Focusing Polycapillary Optics and Their Applications, X-ray Optics and Instrumentation, 10, 2010, 17, https://doi.org/10.1155/2010/867049.
  • [44] Ohzawa S., Development of X-ray Guide Tube, Readout English Edition, no. 12, September 2008.
  • [45] Focussing Polycapillary, strona firmy Helmut Fischer, https://www.helmut-fischer.com/products/x-ray-optics/focussing-polycapillary, [dostęp: 10.09.2022].
  • [46] Kirkpatrick P., Baez A.V., Formation of Optical Images by X-Rays, Journal of the Optical Society of America, 38, 9, 1948.
  • [47] Lider V.V., Kirkpatrick-Baez and Wolter X-Ray Focusing Optics (Review), Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 13, 4, 2019, 670-682.
  • [48] Kirkpatrick-Baez Mirror pairs, strona firmy Crystal Scientific, http://www.crystal-scientific.com/mirror_kb.html, [dostęp: 10.09.2022].
  • [49] Wolter H., Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen, Ann. Phys., 445, 1952, 94-114.
  • [50] Liu F., Reflectance Improvement of Mo/Si Multilayer Mirrors and Masks for Extreme Ultra-Violet Lithography, Hsinchu, Taiwan, 2012.
  • [51] Yulin Sergiy A., Feigl T., Benoit N., Kaiser N., EUV/soft x-ray multilayer optics, Proc. SPIE 5645, Advanced Microlithography Technologies, 27 January 2005, https://doi.org/10.1117/12.579520.
  • [52] Palmer E. W., Hutley M. C, Franks A., Verrill J. F., Gale B., Diffraction gratings (manufacture), rep. Prog. Phys., 38, 8, 1975, https://doi.org/10.1088/0034-4885/38/8/002.
  • [53] Solak H. H., David C., Gobrecht J., Golovkina V., Cerrina F., Kim S. O., nealey P. F., Sub-50 nm period patterns with EUV interference lithography, Microelectronic Engineering, 67-68, 2003, 56-62, https://doi.org/10.1016/S0167-9317(03)00059-5.
  • [54] Barbee Troy W. Jr., Pianetta P., Redaelli R., Tatchyn R., Barbee troy W. III, Molybdenum‐silicon multilayer monochromator for the extreme ultraviolet, Appl. Phys. Lett., 50, 25, 1987, 1841-1843, https://doi.org/10.1063/1.97714.
  • [55] Grisenti R.E., Schöllkopf W., Toennies J.P., Manson J.R., Savas T.A., Smith H.I., He-atom diffraction from nanostructure transmission gratings: The role of imperfections, Phys. Rev. A., 61, 2000, https://doi.org/10.1103/Physreva.61.033608.
  • [56] Gruntman M., Extreme-ultraviolet radiation filtering by freestanding transmission gratings, Applied Optics, 34, 25, 1995, 5732-5737, https://doi.org/10.1364/AO.34.005732.
  • [57] Voronov D.L., Ahn M., Anderson E.H., Cambie R., Chang Chih-Hao et al., High-efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths, Opt. Lett. 35, 2010, 2615-2617.
  • [58] Huang Y., Li T., Xu B., Hong R., Tao Ch., Ling J., Li B., Zhang D., Ni Z., Zhuang S., Calculation of the diffraction efficiency on concave gratings based on Fresnel-Kirchhoff ’s diffraction formula, Applied Optics, 52, 5, 2013, 1110-1116, https://doi.org/10.1364/AO.52.001110.
  • [59] Namioka T., Theory of the Ellipsoidal Concave Grating, J. Opt. Soc. Am., 51, 1961, 4-12.
  • [60] Palmer C. A., Loewen E. G., Diffraction Grating Handbook, Newport Corporation, 2005.
  • [61] Brown B.J., Wilson I.J., Holographic Grating Aberration Correction for a Rowland Circle Mount I, Optica Acta: International Journal of Optics, 28, 12, 1981, 1587-1599, https://doi.org/10.1080/713820509.
  • [62] Hutley M. C., Interference (holographic) diffraction grating, Journal of Physics E: Scientific Instruments, 9, 7, 1976.
  • [63] Zeitner U. D., Oliva M., Fuchs F., Michaelis D., Benkenstein T., Harzendorf T., Kley E.B., High performance diffraction gratings made by e-beam lithography, Appl. Phys. A, 109, 2012, 789-796, https://doi.org/10.1007/s00339-012-7346-z.
  • [64] Dill F. H., Optical lithography, IEEE Transactions on Electron Devices, 22, 7, 1975, 440-444, https://doi.org/10.1109/T-ED.1975.18158.
  • [65] Shallcross R. C., Chawla G. S., Marikkar F. S., Tolbert S., Pyun J., Armstrong N. R., Efficient CdSe Nanocrystal Diffraction Gratings Prepared by Microcontact Molding, ACS nano, 3, 11, 2009, 3629-3637, https://doi.org/10.1021/nn900735y.
  • [66] Harada T., Kita T., Itou M., Taira H., Mikuni A., Mechanically ruled diffraction gratings for synchrotron radiation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment, 246, 1-3, 1986, 272-277, https://doi.org/10.1016/0168-9002(86)90089-6.
  • [67] Kirz J., Phase zone plates for x rays and the extreme UV, J. Opt. Soc. Am., 64, 1974, 301-309.
  • [68] Ren J., Wang Y., Meng X., Sun W., Cao J., Li J., Tai R., Research on partially coherent light propagation through zone plates, Opt. Express, 29, 25, 2021, 40947-40956.
  • [69] Guo Ch.S, Xie Yi-Yan, Sha B., Diffraction algorithm suitable for both near and far field with shifted destination window and oblique illumination, Opt. Lett., 39, 8, 2014, 2338-2341.
  • [70] Kopylov Y.V., Popov A.V., Vinogradov A.V., Application of the parabolic wave equation to X-ray diffraction optics, Optics Communications, 118, 5-6, 1995, 619-636, https://doi.org/10.1016/0030-4018(95)00295-J.
  • [71] Oktem F.S., Dovila J.M., Kamalabadi F., Image formation model for photon sieves, 2013 IEEE International Conference on Image Processing, 2013, 2373-2377, https://doi.org/10.1109/ICIP.2013.6738489.
  • [72] Rafighdoost J., Sabatyan A., Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams, J. Opt. Soc. Am. B, 34, 3, 2017, 608-612.
  • [73] Cannon T.M., Fenimore E.E., Tomographical imaging using uniformly redundant arrays, Appl. Opt., 18, 7, 1979, 1052-1057.
  • [74] Kipp L., Skibowski M., Johnson R.L., Berndt R., Adelung R., Harm S., Seemann R., Sharper images by focusing soft X-rays with photon sieves, Nature, 414, 2001, 184-188, https://doi.org/10.1038/35102526.
  • [75] Sakdinawat A., Liu Yanwei, Soft-x-ray microscopy using spiral zone plates, Opt. Lett., 32, 18, 2007, 2635-2637.
  • [76] Fenimore E., Cannon M., Miller L., Comparison of Fresnel Zone Plates and Uniformly Redundant Arrays, presented at SPIE Twenty-Second Technical Symposium, San Diego 1978.
  • [77] Holmberg A., Nanofabrication of Zone Plate Optics for Compact Soft X-Ray Microscopy, Doctoral Thesis, Department of Applied Physics Royal Institute of Technology Stockholm, Sweden, 2006.
  • [78] Xiong Z., Kunwar P., Soman P., Hydrogel-Based Diffractive Optical Elements (HDOES) Using Rapid Digital Photopatterning, Advanced Optical Materials, 9, 2, 2020, https://doi.org/10.1002/adom.202001217.
  • [79] Löchel H., Braig Ch., Brzhezinskaya M., Siewert F., Baumgärtel P., Firsov A., Erko A., Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates, Opt. Express, 23, 7, 2015, 8788-8799.
  • [80] Liese T., Krebs H.U., Reese M., Grossmann P., Mann K., Development of Multilayer Laue Lenses for Soft X-ray Radiation, Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, July 2010.
  • [81] Bajt S., Prasciolu M., Fleckenstein H. et al., X-ray Focusing with Efficient High-NA Multilayer Laue lenses, Light Sci. Appl., 7, 2018, 17162, https://doi.org/10.1038/lsa.2017.162.
  • [82] Sowa K.M., Kujda M.P., Korecki P., Plenoptic X-ray Microscopy, Appl. Phys. Lett., 116, 2020, 014103, https://doi.org/10.1063/1.5131494.
  • [83] Longo E., From X-ray Tomography to the First X-ray Plenoptic Camera for Nanoparticles Biolocalization, Imaging, Université Paris Saclay (COmUe), 2018.
  • [84] Tinginyanu I., Ursaki V.V., Popa V., Nanoimprint lithography (NIL) and related techniques for electronics applications, nanocoatings and Ultra-Thin Films, 2011, 280-329.
  • [85] Marconi M.C., Wachulak P.W., Extreme Ultraviolet Lithography with Table Top Lasers, Progress in Quantum Electronics, 34, 4, 2010, 173-190, https://doi.org/10.1016/j.pquantelec.2010.03.001.
  • [86] Louis E., Makhotkin I., Zoethout E., Müllender S., Bijkerk F., Multilayer Development for Extreme Ultraviolet and Shorter Wavelength Lithography, EUV Litho, https://www.euvlitho.com/2011/S24.pdf .
  • [87] Bibishkin M.S., Chkhalo N.I., Gusev S.A., Kluenkov E.B., Lopatin A.Ya., Luchin V.I., Pestov A.E., Salashchenko N.N., Shmaenok L.A., Tsybin N.N., Zuev S.Yu., Multilayer Zr/Si filters for EUV lithography and for radiation source metrology, Proc. SPIE 7025, Micro- and nanoelectronics 2007, 702502, 29 April 2008, https://doi.org/10.1117/12.802347.
  • [88] Stearns D.G., Rosen R.S., Vernon S.P., Multilayer mirror technology for soft-x-ray projection lithography, Appl. Opt., 32, 34, 1993, 6952-6960.
  • [89] Chkhalo N. I., Salashchenko N.N., Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics, AIP Advances, 3, 8, 2013, 082130, https://doi.org/10.1063/1.4820354.
  • [90] Svechnikov M.V., Chkhalo N.I., Gusev S.A., Nechay A.N., Pariev D.E. et al., Influence of barrier interlayers on the performance of Mo/Be multilayer mirrors for next-generation EUV lithography, Opt. Express, 26, 26, 2018, 33718-33731.
  • [91] Pease R.F., Chou S.Y., Lithography and Other Patterning Techniques for Future Electronics, Proceedings of the IEEE, 96, 2, 2008, 248-270, https://doi.org/10.1109/JPrOC.2007.911853.
  • [92] Hansson B.A.M., Hemberg O., Hertz H.M., Berglund M., Choi H.-J., Jacobsson B. et al., Characterization of a liquid-xenon-jet laser-plasma extreme-ultraviolet source, Review of Scientific Instruments, 75, 6, 2004, https://doi.org/10.1063/1.1755441.
  • [93] EUV litography systems, strona firmy ASML, https://www.asml.com/en/products/euv-lithography-systems, [dostęp: 10.09.2022].
  • [94] Chkhalo N.I., Künstner S., Polkovnikov V.N., Salashchenko N.N., Schäfers F., Starikov S.D., High performance La/B4C multilayer mirrors with barrier layers for the next generation lithography, Appl. Phys. Lett., 102, 1, 2013, https://doi.org/10.1063/1.4774298.
  • [95] Makhotkin I.A., R.W.E. Van De Kruijs, Zoethout E., Louis E., Bijkerk F., Optimization of LaN/B multilayer mirrors for 6.x nm wavelength, Proc. SPIE 8848, Advances in X-ray/EUV Optics and Components VIII, 88480O, 27 September 2013, https://doi.org/10.1117/12.2024199.
  • [96] Kirichenko A., Kuzin S., Shestov S., Ulyanov A., Person A. et al., KORTES Mission for Solar Activity Monitoring Onboard International Space Station, Frontiers in Astronomy and Space Sciences, 8, 2021.
  • [97] Kent B.J. , Reading D.H., Swinyard B.M., Graper E.B., Spurrett P.H., EUV band-pass filters for the ROSAT wide field camera, Proc. SPIE 1344, EUV, X-ray, and Gamma-ray Instrumentation for Astronomy, 1 November 1990, https://doi.org/10.1117/12.23254.
  • [98] Współpraca między WAT a CBK PAN przy instrumencie GLOWS, Urania. Postępy astronomii, 14.07.2021, https://www.urania.edu.pl/wiadomosci/wspolpraca-miedzy-wat-cbk-pan-przy-instrumencie-glows, [dostęp: 10.09.2022].
  • [99] GLOWS, Strona Centrum Badań Kosmicznych Pan, https://glows.cbk.waw.pl/pl/urzadzenie/,[dostęp: 10.09.2022].
  • [100] Wachulak P., Torrisi A., Ayele M., Bartnik A., Czwartos J., Węgrzyński Ł., Fok T., Fiedorowicz H., Nanoimaging using soft X-ray and EUV laser-plasma sources, EPJ Web of Conferences, vol. 167, 2018, Plasma Physics by Laser and Applications (PPLA 2017).
  • [101] Torrisi A., Wachulak P.W., Bartnik A., Węgrzyński Ł., Fok T., Fiedorowicz H., Biological and material science applications of EUV and SXR nanoscale imaging systems based on double stream gas puff target laser plasma sources, Nucl. Instr. Meth. Phys. Res., B 411, 2017, 29-34.
  • [102] Brizuela F., Brewer C., Fernandez S., Martz D., Marconi M. et al., High resolution full-field imaging of nanostructures using compact extreme ultraviolet lasers, Journal of Physics: Conference Series, 186, 2009.
  • [103] Nawaz M.F, Jancarek A., Nevrkla M., Duda M.J., Pina L., Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source, Proc. SPIE 10235, EUV and X-ray Optics: Synergy between Laboratory and Space V, 102350P, 31 May 2017, https://doi.org/10.1117/12.2269601.
  • [104] Wachulak P., Torrisi A., Ayele M., Czwartos J., Bartnik A., Węgrzyński Ł., Fok T., Parkman T., Salačová Š., Turňová J., Odstrčil M., Fiedorowicz H., Bioimaging Using Full Field and Contact EUV and SXR Microscopes with Nanometer Spatial Resolution, Applied Sciences, 7, 6, 2017, 548, https://doi.org/10.3390/app7060548.
  • [105] Adam J. F., Moy J. P., Susini J., Table-top water window transmission x-ray microscopy: Review of the key issues, and conceptual design of an instrument for biology, Review of Scientific Instruments, 76, 9, 2005, https://doi.org/10.1063/1.2018633.
  • [106] Berglund M., Rymell L., Peuker M., Wilhein T., Hertz H.M., Compact water-window transmission X-ray microscopy, Journal of Microscopy, 197, 3, 2000, 268-273.
  • [107] Parkman T., Nevrkla M., Jančárek A., Turňová J., Pánek D., Vrbová M., Table-Top Water-Window Microscope Using a Capillary Discharge Plasma Source with Spatial Resolution 75 nm, Applied Sciences, 10, 18, 2020, 6373, https://doi.org/10.3390/app10186373.
  • [108] Wachulak P., Torrisi A., Nawaz M., Bartnik A., Adjei D., Vondrová Š. et al., A Compact “Water Window” Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology, Microscopy and Microanalysis, 21, 5, 2015, 1214-1223, https://doi.org/10.1017/S1431927615014750.
  • [109] Wachulak P.W., Recent advancements in the “water-window” microscopy with laser-plasma SXR source based on a double stream gas-puff target, Opto-Electronics Review, 24, 3, 2016,144-154, https://doi.org/10.1515/oere-2016-0018.
  • [110] Wachulak P.W., Torrisi A., Bartnik A., Węgrzyński Ł., Fok T., Jarocki R., Kostecki J., Szczurek M., Fiedorowicz H., Fresnel zone plate telescope for condenser alignment in water-window microscope, J. Opt., 17, 5, 2015.
  • [111] Lerner J. M., Chambers R. J., Passereau G., Flat Field Imaging Spectroscopy Using Aberration Corrected Holographic Gratings, Proc. SPIE 0268, Imaging Spectroscopy I, 21, July 1981, https://doi.org/10.1117/12.959934.
  • [112] Voronov D.L., Anderson E.H., Cambie R., Cabrini S., Dhuey S.D., Goray L.I., Gullikson E.M., Salmassi F., Warwick T., Yashchuk V.V., Padmore H.A., A 10,000 groove/mm multilayer coated grating for EUV spectroscopy, Optics Express, 19, 7, 2011, 6320-6325, https://doi.org/10.1364/Oe.19.006320
  • [113] Drexler W. (ed.), Fujimoto J.G. (ed.), Optical Coherence Tomography, Springer International Publishing Switzerland, 2015.
  • [114] Fuchs S., Blinne A., Rödel C., Zastrau U., Hilbert V., Wünsche M., Bierbach J., Frumker E., Förster E., Paulus G.G., Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation, Appl. Phys. B, 106, 2012, 789-795, https://doi.org/10.1007/s00340-012-4934-8.
  • [115] Wachulak P., Bartnik A., Fiedorowicz H., Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Sci. Rep., 8, 8494, 2018, https://doi.org/10.1038/s41598-018-26909-0.
  • [116] Arikkatt A., Węgrzyński Ł., Bartnik A., Fiedorowicz H., Wachulak P., Laboratory system for optical coherence tomography (OCT) using a laser plasma source of soft x-rays and extreme ultraviolet and focusing ellipsoidal optics, Optics Express, 30, 8, 2022, 13491-13509.
  • [117] Skruszewicz S., Fuchs S., Abel J.J., Nathanael J., Reinhard J., Rödel C., Wiesner F., Wünsche M., Wachulak P., Bartnik A., Janulewicz K., Fiedorowicz H., Paulus G.G., Coherence tomography with broad bandwidth extreme ultraviolet and soft X-ray radiation, Applied Physics B., 127, 55, 2021, https://doi.org/10.1007/s00340-021-07586-w.
  • [118] Wünsche M., Fuchs S., Weber T., Nathanael J., Abel J.J., Reinhard J., Wiesner F., Hübner U., Skruszewicz S., Paulus G.G., Rödel C., A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis, review of Scientific Instruments, 90, 023108, 2019, https://doi.org/10.1063/1.5054116.
  • [119] Galayda J.N., Arthur J., Ratner D.F., White W.E., X-ray free-electron lasers - present and future capabilities [Invited], J. Opt. Soc. Am. B, 27, 11, 2010, B106-B118,.
  • [120] Modi M.H., Rai S.K., Idir M., Schaefers F., Lodha G.S., NbC/Si multilayer mirror for next generation EUV light sources, Opt. Express, 20, 14, 2012, 15114-15120.
  • [121] Siewert F., Löchel B., Buchheim J., Eggenstein F., Firsov A., Gwalt G. et al., Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin, J. Synchrotron Rad., 25, 2018, 91-99.
  • [122] Narodowe Centrum Badań Jądrowych, PolFEL 1.0, https://www.ncbj.gov.pl/polfel, [dostęp: 10.09.2022].
  • [123] Fedin D., Kantsyrev V.L., Bauer B.S., Shlyaptseva A.S, Brytov I., Polychromator five-channel x-ray/EUV spectrometer with imaging transmission grating for plasma diagnostics, Proc. SPIE 3764, Ultraviolet and X-ray Detection, Spectroscopy, and Polarimetry III, 25 November 1999, https://doi.org/10.1117/12.371101.
  • [124] Astakhov D.I., Goedheer W.J., Lee C.J., Ivanov V.V., Krivtsun V.M. et al., Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen, Journal of Physics D: Applied Physics, 49, 29, 2016, https://doi.org/10.1088/0022-3727/49/29/295204.
  • [125] Milligan R.O., Dennis B.R., Velocity Characteristics of Evaporated Plasma using Hinode/EUV Imaging Spectrometer, The Astrophysical Journal, 699, 2, 2009.
  • [126] Filevich J., Kanizay K., Marconi M.C., Chilla J.L.A., Rocca J.J., Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings, Opt. Lett., 25, 5, 2000, 356-358.
  • [127] Corso A.J., Del Zanna G., Polito V., Future perspectives in solar hot plasma observations in the soft X-rays, experimental astronomy, 51, 2021, 453-474, https://doi.org/10.1007/s10686-021-09756-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3b56ef-a191-4557-8aa7-4487f3cc4b8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.