PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, the film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.
Rocznik
Strony
89--101
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • University of Utah, Department of Metallurgical Engineering, 135 South 1460 East, Rm 412, Salt Lake City, UT 84112
autor
  • Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352
autor
  • University of Utah, Department of Metallurgical Engineering, 135 South 1460 East, Rm 412, Salt Lake City, UT 84112
Bibliografia
  • ABRAHAM, F. F., 1978. The interfacial density profile of a Lennard‐Jones fluid in contact with a (100) Lennard‐Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation. The Journal of Chemical Physics, 68(8), 3713-3716.
  • BEAUSSART, A., PARKINSON, L., MIERCZYNSKA-VASILEV, A., BEATTIE, D. A., 2012. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. Journal of Colloid and Interface Science, 368(1), 608-615.
  • BERENDSEN, H., GRIGERA, J., STRAATSMA, T., 1987. The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269-6271.
  • CAO, Q., WANG, X., MILLER, J. D., CHENG, F., JIAO, Y., 2011. Bubble attachment time and FTIR analysis of water structure in the flotation of sylvite, bischofite and carnallite. Minerals Engineering, 24(2), 108-114.
  • CHENG, F., CAO, Q., GUAN, Y., CHENG, H., WANG, X., MILLER, J. D., 2013. FTIR analysis of water structure and its influence on the flotation of arcanite (K2SO4) and epsomite (MgSO4·7H2O). International Journal of Mineral Processing, 122, 36-42.
  • CHOWDHURI, S., CHANDRA, A., 2001. Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. The Journal of Chemical Physics, 115, 3732.
  • CYGAN, R. T., LIANG, J.-J., KALINICHEV, A. G., 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4), 1255-1266.
  • DANG, L. X., PETTITT, B. M., 1990. A theoretical study of like ion pairs in solution. Journal of Physical Chemistry, 94(10), 4303-4308.
  • DANG, L. X., SMITH, D. E., 1995. Comment on ‘‘Mean force potential for the calcium–chloride ion pair in water’’ [J. Chem. Phys. 99, 4229 (1993)]. The Journal of Chemical Physics, 102(8), 3483-3484.
  • DELLEY, B., 2000. DMol3 DFT studies: from molecules and molecular environments to surfaces and solids. Computational Materials Science, 17(2), 122-126.
  • DOWNS, R. T., HALL-WALLACE, M., 2003. The American Mineralogist crystal structure database. American Mineralogist, 88(1), 247-250.
  • DRELICH, J., MILLER, J. D., 2012. Induction time measurements for air bubbles on chalcopyrite, bornite, and gold in seawater. Water in Mineral Processing, Proceedings of the First International Symposium, J. Drelich (ed.), Society for Mining, Metallurgy, and Exploration (SME) Englewood, CO, USA, 73-85.
  • DU, H., MILLER, J., 2007. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces. International Journal of Mineral Processing, 84(1), 172-184.
  • DU, H., YIN, X., OZDEMIR, O., LIU, J., WANG, X., ZHENG, S., MILLER, J.D., 2012. Molecular dynamics simulation analysis of solutions and surfaces in nonsulfide flotation systems. In: Molecular Modeling for the Design of Novel Performance Chemicals and Materials, B. Rai (ed.), CRC Press, Boca Raton, FL, USA, Chapter 4.
  • EFTEKHARI-BAFROOEI, A., BORGUET, E., 2009. Effect of surface charge on the vibrational dynamics of interfacial water. Journal of the American Chemical Society, 131(34), 12034-12035.
  • GALLO, P., RAPINESI, M., ROVERE, M., 2002. Confined water in the low hydration regime. The Journal of Chemical Physics, 117, 369.
  • JIN, J., 2016. Wetting and Interfacial Water Analysis of Selected Mineral Surfaces as Determined by MDS and SFVS. PhD Dissertation, University of Utah, Salt Lake City, UT, USA.
  • JIN, J., MILLER, J. D., DANG, L. X., 2014. Molecular dynamics simulation and analysis of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. International Journal of Mineral Processing, 128, 55-67.
  • JONES, J. E., 1924. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 106, 441-462.
  • KALINICHEV, A. G., KIRKPATRICK, R. J., 2002. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases. Chemistry of Materials, 14(8), 3539-3549.
  • KONESHAN, S., RASAIAH, J. C., LYNDEN-BELL, R., LEE, S., 1998. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 C. The Journal of Physical Chemistry B, 102(21), 4193-4204.
  • KOWALCZUK, P.B., ZAWALA, J., DRZYMALA, J., MALYSA, K., 2016. Influence of hexylamine on kinetics of flotation and bubble attachment to the quartz surface. Separation Science and Technology, 51(15-16), 2681-2690.
  • KUSALIK, P. G., SVISHCHEV, I. M., 1994. The spatial structure in liquid water. Science, 265(5176), 1219-1221.
  • LEE, S. H., ROSSKY, P. J., 1994. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study. The Journal of Chemical Physics, 100, 3334.
  • LUZAR, A., CHANDLER, D., 1996. Effect of environment on hydrogen bond dynamics in liquid water. Physical Review Letters, 76(6), 928.
  • LYNDEN-BELL, R., RASAIAH, J., 1997. From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. The Journal of Chemical Physics, 107(6), 1981-1991.
  • MAHONEY, M. W., JORGENSEN, W. L., 2000. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics, 112(20), 8910-8922.
  • NIECIKOWSKA, A., KRASOWSKA, M., RALSTON, J., MALYSA, K., 2012. Role of surface charge and hydrophobicity in the three-phase contact formation and wetting film stability under dynamic conditions. The Journal of Physical Chemistry C, 116(4), 3071-3078.
  • NIETO-DRAGHI, C., ÁVALOS, J. B., ROUSSEAU, B., 2003. Transport properties of dimethyl sulfoxide aqueous solutions. The Journal of Chemical Physics, 119(9), 4782-4789.
  • OSTROVERKHOV, V., WAYCHUNAS, G. A., SHEN, Y., 2005. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Physical Review Letters, 94(4), 046102.
  • PALMER, D., 2009. CrystalMaker Software: CrystalMaker Software Ltd, Oxford, England.
  • PEARLMAN, D. A., CASE, D. A., CALDWELL, J. W., ROSS, W. S., CHEATHAM, T. E., DEBOLT, S., KOLLMAN, P., 1995. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1), 1-41.
  • PERDEW, J. P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865.
  • PERDEW, J. P., ZIESCHE, P., ESCHRIG, H., 1991. Electronic structure of solids’ 91 (Vol. 11): Akademie Verlag, Berlin.
  • RAPPÉ, A. K., CASEWIT, C. J., COLWELL, K., GODDARD III, W., SKIFF, W., 1992. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035.
  • RASAIAH, J. C., ZHU, J., 1990. Cavity functions and association in models for weak electrolytes and sticky hard spheres. The Journal of Chemical Physics, 92(12), 7554-7564.
  • ROWLINSON, J. S., SWINTON, F., 2013. Liquids and Liquid Mixtures: Butterworths Monographs in Chemistry: Butterworth-Heinemann, London, UK.
  • RUSTAD, J. R., 2001. Molecular models of surface relaxation, hydroxylation, and surface charging at oxide-water interfaces. Reviews in Mineralogy and Geochemistry, 42(1), 169-198.
  • RUSTAD, J. R., FELMY, A. R., BYLASKA, E. J., 2003. Molecular simulation of the magnetite-water interface. Geochimica et Cosmochimica Acta, 67(5), 1001-1016.
  • SHEN, Y., 1994. Surfaces probed by nonlinear optics. Surface Science, 299, 551-562.
  • SHEN, Y. R., OSTROVERKHOV, V., 2006. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chemical Reviews, 106(4), 1140-1154.
  • SHRIMALI, K., JIN, J., VAZIRI HASSAS, B., WANG, X., MILLER, J.D., 2016. The surface state of hematite and its wetting characteristics. Journal of Colloid and Interface Science, 477, 16-24.
  • SMITH, D. E., DANG, L. X., 1994. Computer simulations of NaCl association in polarizable water. The Journal of Chemical Physics, 100(5), 3757-3766.
  • SOMASUNDARAM, T., LYNDEN-BELL, R., PATTERSON, C., 1999. A simulation study of the kinetics of passage of CO2 and N2 through the liquid/vapor interface of water. The Journal of Chemical Physics, 111(5), 2190-2199.
  • SOMASUNDARAN, P., 2006. Encyclopedia of surface and colloid science (Vol. 1): CRC press, Boca Raton, FL, USA.
  • SPOHR, E., HARTNIG, C., GALLO, P., ROVERE, M., 1999. Water in porous glasses. A computer simulation study. Journal of Molecular Liquids, 80(2), 165-178.
  • SUBRAHMANYAM, T., MONTE, M., MIDDEA, A., VALDIVIEZO, E., LINS, F., 1999. Contact angles of quartz by capillary penetration of liquids and captive bubble techniques. Minerals Engineering, 12(11), 1347-1357.
  • TAKAHASHI, T., MIYAHARA, T., MOCHIZUKI, H., 1979. Fundamental study of bubble formation in dissolved air pressure flotation. Journal of Chemical Engineering of Japan, 12(4), 275-280.
  • WANG, J., KALINICHEV, A. G., KIRKPATRICK, R. J., 2004. Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 68(16), 3351-3365.
  • WANG, J., KALINICHEV, A. G., KIRKPATRICK, R. J., 2006. Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et Cosmochimica Acta, 70(3), 562-582.
  • WANG, X., YIN, X., NALASKOWSKI, J., DU, H., MILLER, J., 2012. Molecular features of water films created with bubbles at hydrophilic and hydrophobic surfaces. Proceedings XXVI International Mineral Processing Congress, IMPC 2012, New Delhi, India, 5819-5828.
  • WANG, X., YIN, X., NALASKOWSKI, J., DU, H., MILLER, J. D., 2015. Molecular features of water films created with bubbles at silica surfaces. Surface Innovations, 3(SI1), 20-26.
  • WERDER, T., WALTHER, J. H., JAFFE, R., HALICIOGLU, T., KOUMOUTSAKOS, P., 2003. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. The Journal of Physical Chemistry B, 107(6), 1345-1352.
  • WILSON, I. D., ADLARD, E. R., COOKE, M., POOLE, C. F., 2000. Encyclopedia of Separation science, Academic Press, San Diego, CA, USA.
  • YALAMANCHILI, M., KELLAR, J., MILLER, J., 1991. In-situ FT-IR internal reflection spectroscopy of collector adsorption phenomena in soluble-salt flotation systems. Paper presented at the Proceedings of the XVII International Mineral Processing Congress., Dresden, Germany, 23-28 September 1991.
  • YEGANEH, M., DOUGAL, S., PINK, H., 1999. Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface. Physical Review Letters, 83(6), 1179.
  • ZHANG, X., DU, H., WANG, X., MILLER, J., 2013. Surface chemistry considerations in the flotation of rare-earth and other semisoluble salt minerals. Minerals & Metallurgical Processing, 30(1) 24-37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3b1f1d-89b5-4fe1-a163-a2814025f4cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.