PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Method of Increasing the Accuracy of Controlling the Parameters of Dynamic Systems and Regulating the Parameters of the Elastic-Deformable State in the Process of Treating Low-Rigidity Shafts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the models of technological systems and the parameters of the control object allowing one to seek rational control algorithms, choose the structure of the control system and synthesize the correction devices. The generalized and detailed structural schemes of controlling the elastic-deformable state during working on low-rigidity shafts while applying the tensile force as well as with additional feedback and transfer functions of technological systems, considering the assumptions made and the results of theoretical and experimental testing. The structure of the control object and the dependencies describing the system and considering the specificity of forming the section of the machined surface of the elastic-deformable low-rigidity shafts at longitudinal feeds. As a result of the research a method of increasing the accuracy of controlling the parameters of dynamic systems at the change of the longitudinal feed and regulating the parameters of the elastic-deformable state of low-rigidity elements by introducing correction devices in form of negative feedback in accordance with the cutting force. Moreover, the possibility of creating adaptive units which are not very sensitive to the change of parameters in turning and grinding.
Twórcy
  • Department of Production Computerisation and Robotisation, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
  • Department of Production Computerisation and Robotisation, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
  • Department of Production Computerisation and Robotisation, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
Bibliografia
  • 1. Arnaud L., Gonzalo O., Seguy S., Jauregi H. and Peigne G. Simulation of low rigidity part machining applied to thin-walled structures. The International Journal of Advanced Manufacturing Technology, 54, 2011, 479–488.
  • 2. Dziubinska A., Gontarz A. and Dziedzic K. Qualitative Research of AZ31 Magnesium Alloy AirCraft Brackets Produced by a New Forging Method. Archives of Metallurgy and Materials, 61 (2), 2016, 103–108.
  • 3. Gao Y.Z., Du Z.J., Li M.Y. and Dong W. An automated approach for machining allowance evaluation of casting parts. International Journal Of Computer Integrated Manufacturing, 32(11), 2019, 1043–1052.
  • 4. Halas W., Taranenko V. and Swic A. Investigation of influence of grinding regimes on suface tension state. Lecture Notes in Artificial Intelligence, 5027, 2008, 749–756.
  • 5. Huang X., Jia F., Zhang Y. and Lian J. Prediction of surface location error in milling considering the effects of uncertain factors. Mechanical Sciences, 8(2), 2017, 385–392.
  • 6. Huang Y.A., Liu H.M., Yin Z.P. and Xiong Y.L.Complex Surface Machining: Thermomechanical Analysis for Error Prediction of Low-Rigidity Workpiece. Lecture Notes in Artificial Intelligence, 5928, 2009, 666–677.
  • 7. Jaworski J., Kluz R. and Trzepieciński T. Operational tests of wear dynamics of drills made of low-alloy high-speed HS2–5-1 steel. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(2), 2016, 271–277.
  • 8. Kolny D., Więcek D., Ziobro P. and Krajčovič M. Application of a computer tool monitoring system in CNC machining centres. Applied Computer Science, 13(4), 2017, 7–19.
  • 9. Li H. and Shin Y. C. Integration of thermo-dynamic spindle and machining simulation models for a digital machining system. The International Journal of Advanced Manufacturing Technology, 40(7), 2014, 648–661.
  • 10. Lin C.W., Tu J. F. and Kamman J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. International Journal of Machine Tools and Manufacture, 43(10), 2003, 1035–1050.
  • 11. Lopes L.G.D., Gomes J.H.D., de Paiva A.P., Barca L.F., Ferriera J.R. and Balestrassi P.P. A multivariate surface roughness modelling and optimization under conditions of uncertainty. Measurement, 8(46), 2013, 2555–2568.
  • 12. Ma C., Zhang L., Bao C., Jiang Y. and Xiao X. Vibration modal shapes and strain measurement of the main shaft assembly of a friction hoist. Journal of Vibroengineering, 19(8), 2017, 6252–6261.
  • 13. Marczuk A., Caban J., Sanvinykh P., Turubanov N. and Zyryanov D. Maintenance research of a horizontal ribbon mixer. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 1(19), 2017, 121–125.
  • 14. Nguyen V., Johnson J. and Melkote S. Active vibration suppression in robotic milling using optimal control. International Journal of Machine Tools and Manufacture, 152, 2020, art. no. 103541.
  • 15. Pahar I., Bayat M. and Bayat M. Variational approach for approximate analytical solution to nonlinear natural vibration equations. IJST, Transactions of Mechanical Engineering, 39(M1+), 2015, 237–282.
  • 16. Qi H., Tian Y. and Zhang D. Machining forces prediction for peripheral milling of low-rigidity component with curved geometry. The International Journal of Advanced Manufacturing Technology, 64, 2013, 1599–1610.
  • 17. Rudawska A. Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. International Journal of Adhesion and Adhesives, 50, 2014, 235–243.
  • 18. Świc A., Draczew A. and Gola A. Method of achieving accuracy of thermo-mechanical treatment of low-rigidity shafts. Advances in Science and Technology Research Journal, 10(29), 2016, 62–70.
  • 19. Świć A., Gola A., Wołos D. and Opielak M. Microgeometry Surface Modelling in the Process of LowRigidity Elastic-Deformable Shafts Turning, Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 41(2), 2017, 159–167.
  • 20. Świc A., Sobaszek Ł., Gola A. and Orynycz O. Classification and Analysis of Typical Structures of Dynamic Systems of Machining of Low-Rigidity Shafts. IFAC PapersOnline, 52(10), 2019, 142–147.
  • 21. Świć A., Taranenko W. and Szabelski J. Modelling dynamic systems of low-rigid shaft grinding. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2(50), 2011, 13–24.
  • 22. Świć A., Wołos D., Zubrzycki J., Opielak M., Gola A. and Taranenko V. Accuracy control in the machining of low rigidity shafts. Applied Mechanics and Materials, 613, 2014, 357–367.
  • 23. Świc A. and Taranenko W. Adaptive control of machining accuracy of axial-symmetrical low-rigidity parts in elastic-deformable state. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 14(3), 2012, 215–221.
  • 24. Świć A., Gola A. and Hajduk M. Modelling of characteristics of turning of shafts with low rigidity. Applied Computer Science, 12(3), 2016, 61–73.
  • 25. Taranenko G., Taranenko W., Świć A. and Szabelski J. Modelling of dynamic systems of low-rigidity shaft machining. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 4(48), 2010, 4–15.
  • 26. Urbicain G., Olvera D., Fernandez A., Rodruguez A., Tabernero I. and Lopez de Lacalle L.N. Stability Lobes in Turning of Low Rigidity Components. Advanced Materials Research, 498, 2012, 231–236.
  • 27. Vinayagamoorthy R. and Xavior M.A. Parametric Optimization on Multi-Objective Precision Turning Using Grey Relational Analysis. Proc. of 12th Global Congress On Manufacturing And Management, Vellore, India 2014, 299–307.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3ab04b-aea6-4daf-a497-641227b9caf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.