PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automation of slice thickness measurements in computed tomography images of AAPM CT performance phantom using a non-rotational method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The current study proposes a method for automatically measuring slice thickness using a non-rotational method on the middle stair object of the AAPM CT performance phantom image. Method: The AAPM CT performance phantom was scanned by a GE Healthcare 128-slice CT scanner with nominal slice thicknesses of 0.625, 1.25, 2.5, 3.75, 5, 7.5 and 10 mm. The automated slice thickness was measured as the full width at half maximum (FWHM) of the profile of the middle stair object using a non-rotational method. The non-rotational method avoided rotating the image of the phantom. Instead, the lines to make the profiles were automatically rotated to confirm the stair’s location and rotation. The results of this non-rotational method were compared with those from a previous rotational method. Results: The slice thicknesses from the non-rotational method were 1.55, 1.86, 3.27, 4.86, 6.58, 7.57, and 9.66 mm for nominal slice thicknesses of 0.625, 1.25, 2.4, 3.75, 5, 7.5, and 10 mm, respectively. By comparison, the slice thicknesses from the rotational method were 1.53, 1.87, 3.32, 4.98, 6.77, 7.75, and 9.80 mm, respectively. The results of the non- rotational method were slightly lower (i.e. 0.25%) than the results of the rotational method for each nominal slice thickness, except for the smallest slice thickness. Conclusions: An alternative algorithm using a non-rotational method to measure the slice thickness of the middle stair object in the AAPM CT performance phantom was successfully implemented. The slice thicknesses from the non- rotational method results were slightly lower than the rotational method results for each nominal slice thickness, except at the smallest nominal slice thickness (0.625 mm).
Rocznik
Strony
133--138
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Installation of Radiology, Indriati Hospital Solo Baru, Jl.Palem Raya, Village III, Langenharjo, Grogol District, Sukaharjo Regency 57552, Central Java , Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
Bibliografia
  • 1. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51(13):R29-R43. https://doi.org/10.1088/0031-9155/51/13/r03
  • 2. Aweda MA, Arogundade RA. Patient dose reduction methods in computerized tomography procedures: A review. Int J Phys Sci. 2007;2(1):1-9
  • 3. Anam C, Budi WS, Haryanto F, Fujibuchi T, Dougherty G. A novel multiple-windows blending of CT images in red-green-blue (RGB) color space: Phantoms study. Scientific Visualization. 2019;11(5):56-69. https://doi.org/10.26583/sv.11.5.06
  • 4. Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. The Egyptian Journal of Radiology and Nuclear Medicine. 2016;47(4):1665-1671. https://doi.org/10.1016/j.ejrnm.2016.08.016
  • 5. Elnour H, Hassan HA, Mustafa A, Osman H, Alamri S, Yasen A. Assessment of Image Quality Parameters for Computed Tomography in Sudan. Open Journal of Radiology. 2017;7(1):75-84. https://doi.org/10.4236/ojrad.2017.71009
  • 6. Ford JM, Decker SJ. Computed tomography slice thickness and its effects on three dimensional reconstruction of anatomical structures. Journal of Forensic Radiology and Imaging. 2016;4:43-46. https://doi.org/10.1016/j.jofri.2015.10.004
  • 7. Vermiglio G, Acri G, Testagrossa B, Causa F, Tripepi M. Procedures for evaluation of slice thickness in medical imaging systems. In: Eldin AB, editor. Modern Approaches To Quality Control. IntechOpen, London; 2011:383-404. https://doi.org/10.5772/23693
  • 8. Makmur IWA, Setiabudi W, Anam C. Evaluasi ketebalan irisan (slice thickness) pada pesawat CT-scan single slice. Jurnal Sains dan Matematika. 2013;21:42–47
  • 9. Morsbach F, Zhang YH, Martin L, Lindqvist C, Brismar T. Body composition evaluation with computed tomography: Contrast media and slice thickness cause methodological errors. Nutrition. 2019;59:50-55. https://doi.org/10.1016/j.nut.2018.08.001
  • 10. McCollough CH, Bruesewitz MR, McNitt-Gray MF, et al. The phantom portion of the American College of Radiology (ACR) Computed Tomography (CT) accreditation program. Practical tips, artifact, example, and pitfalls to avoid. Med Phys 2004;31(9):2423-2442. https://doi.org/10.1118/1.1769632
  • 11. An HJ, Son J, Jin H, Sung J, Chun M. Acceptance test and clinical commissioning of CT simulator. Progress in Medical Physics. 2019;30(4):160-166. https://doi.org/10.14316/pmp.2019.30.4.160
  • 12. Husby E, Svendsen ED, Andersen HK, Martinsen ACT. 100 days with scans of the same Catphan phantom on the same CT scanner. J Appl Clin Med Phys. 2017;18(6):224-231. https://doi.org/10.1002/acm2.12186
  • 13. Sofiyatun S, Anam C, Zahro UM, Rukmana DA, Dougherty G. An automated measurement of image slice thickness of computed tomography. Atom Indonesia. 2021;47(2):121-128. https://doi.org/10.17146/aij.2021.1111
  • 14. Lasiyah N, Anam C, Hidayanto E, Dougherty G. Automated procedure for slice thickness verification of computed tomography images: Variations of slice thickness, position from iso-center and reconstruction filter. J Appl Clin Med Phys. 2021;22(7):313-321. https://doi.org/10.1002/acm2.13317
  • 15. Widyanti ER, Anam C, Hidayanto E, Haekal M. The impact of noise on the results of automated slice sensitivity profile measurements in computed tomography. International Journal of Progressive Sciences and Technologies. 2021;26(2):657-663. https://doi.org/10.52155/ijpsat.v26.2.3110
  • 16. Anam C. Types of statistical tests for analysis of research results. Berkala Fisika. 23(4):115-117
  • 17. Sunardi H, Zulkifli Z, Antony F. Geometric transformation of rotation of digital imagery to obtain optimal compression using lossless and lossy methods (In Bahasa Indonesia). Jurnal Informatika Global. 2021;12(1):15-22
  • 18. International Atomic Energy Agency. Quality assurance programme for computed tomography: Diagnostic and therapy applications, IAEA-Human health series No. 19. IAEA, Vienna; 2012
  • 19. Greene TC, Rong XJ. Evaluation of techniques for slice sensitivity profile measurement and analysis. J Appl Clin Med Phys. 2014;15(2):281-294. https://doi.org/10.1120/jacmp.v15i2.4042
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e3a36fb-385e-4373-a8a6-27aba6b5bd24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.