PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ammonium nitrate (AN) is considered to be a very hazardous and difficult to handle component of mineral fertilizers. Differential thermal analysis coupled with thermogravimetry and mass spectrometry was used to determine the possible inhibiting effect of selected magnesium compounds on thermal decomposition of AN. Each additive was mixed with AN to create samples with AN:magnesium compound mass ratios of 4:1, 9:1 and 49:1. Most of analyzed compounds enhanced thermal stability of ammonium nitrate, increasing the temperature of the beginning of exothermic decomposition and decreasing the amount of generated heat. Magnesium chloride hexahydrate was determined to accelerate the decomposition of AN while magnesium sulphate, sulphate heptahydrate, nitrate hexahydrate together with magnesite and dolomite minerals were defi ned as inhibiting agents.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Department of Technology and Chemical Processes, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Technology and Chemical Processes, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Technology and Chemical Processes, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Technology and Chemical Processes, Smoluchowskiego 25, 50-372 Wrocław, Poland
Bibliografia
  • 1. Zygmunt, B. & Buczkowski, D. (2007). Influence of Ammonium Nitrate Prills’ Properties on Detonation Velocity of ANFO. Propellants Explos. Pyrotech. 32(5), 411–414. DOI: 10.1002/prep.200700045.
  • 2. Najlepsze Dostępne Techniki (BAT) Wytyczne dla Branży Chemicznej w Polsce (2005), Przemysł Wielkotonażowych Chemikaliów Nieorganicznych, Amoniaku, Kwasów i Nawozów Sztucznych, 13–75, 98–111, Min. Środ., Warszawa.
  • 3. Oommen, C. & Jain, S.R. (1999). Ammonium nitrate: a promising rocket propellant oxidizer. J. Hazard. Mater. A67, 253–281. DOI: 10.1016/S0304-3894(99)00039-4.
  • 4. Kumar, P., Joshi, P.C. & Kumar, R. (2016). Thermal decomposition and combustion studies of catalyzed AN/KDN based solid propellants. Combust. Flame. 166, 316–332. DOI: 10.1016/j.combustflame.2016.01.032.
  • 5. Kohga, M. & Okamoto, K. (2011). Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust. Flame. 158, 573–582. DOI: 10.1016/j.combustfl ame.2010.10.009.
  • 6. Shiota, K., Matsunaga, H. & Miyake, A. (2017). Effects of amino acids on solid-state phase transition of ammonium nitrate. J. Therm. Anal. Calorim. 127, 851–856. DOI: 10.1007/s10973-016-5416-8.
  • 7. Asgari, A., Ghan,i K., Keshavarz, M.H., Mousaviazar, A. & Khajavian, R. (2018). Ammonium nitrate-MOF-199: A new approach for phase stabilization of ammonium nitrate. Thermochim. Acta 667, 148–152. DOI: 10.1016/j.tca.2018.07.018.
  • 8. Dana, A.G., Shter, G.E. & Grader, G.S. (2014). Thermal analysis of aqueous urea ammonium nitrate alternative fuel. RSC Adv. 4, 1–14. DOI: 10.1039/C4RA04381B.
  • 9. Keskar, M., Vittal Rao, T.V. & Sali, S.K. (2010). Solid state reactions of UO2, ThO2 and (U,Th)O2 with ammonium nitrate. Thermochim. Acta 510, 68–74. DOI: 10.1016/j.tca.2010.06.024.
  • 10. Kohga, M. & Togo, S. (2018). Infl uence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust. Flame. 192, 10–24. DOI: 10.1016/j.combustflame.2018.01.040.
  • 11. Oxley, J.C., Smith, J. L., Rogers, E. & Yu, M. (2002). Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim. Acta 384, 23–45. DOI: 10.1016/S00406031(01)00775-4.
  • 12. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.
  • 13. Yang, M., Chen, X., Yuan, B., Wang, Y., Rangwala, A.S., Cao, H., Niu, Y., Zhang, Y., Fan, A. & Yin, S. (2018). Inhibition effect of ammonium dihydrogen phosphate on the thermal decomposition characteristics and thermal sensitivity of ammonium nitrate. J. Anal. Appl. Pyrol. 134, 195–201. DOI: 10.1016/j.jaap.2018.06.008.
  • 14. Izato, Y. & Miyake, A. (2015). Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J. Therm. Anal. Calorim. 121, 287–294. DOI: 10.1007/s10973-015-4739-1.
  • 15. Gunawan, R. & Zhang, D. (2009). Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J. Hazard. Mater. 165, 751–758. DOI: 10.1016/j.jhazmat.2008.10.054.
  • 16. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2015). Ammonium nitrate thermal decomposition with additives. J. Loss Prevent. Proc. 35, 307–315. DOI: 10.1016/j.jlp.2014.10.011.
  • 17. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2016). Effects of inhibitor and promoter mixtures on ammonium nitrate fertilizer explosion hazards. Thermochim. Acta 624, 69–75. DOI: 10.1016/j.tca.2015.12.005.
  • 18. Sinditskii, V.P., Egorshev, V.Y., Levshenkov, A.I. & Serushkin, V.V. (2005). Ammonium nitrate: combustion mechanism and the role of additives. Propell. Explos. Pyrot. 30(4), 269–280. DOI: 10.1002/prep.200500017.
  • 19. Tan, L., Xia, L., Wu, Q., Xu, S. & Liu, D. (2015). Effect of urea on detonation characteristics and thermal stability of ammonium nitrate. J. Loss Prevent. Proc. 38, 169–175. DOI: 10.1016/j.jlp.2015.09.012.
  • 20. Madany, G.H. & Burnet, G. (1968). Inhibition of the thermal decomposition of ammonium nitrate. J. Agr. Food Chem. 16(1), 136–141.
  • 21. Klimova, I., Kaljuvee, T., Turn, L., Bender, V., Trikkel, A. & Kuusik, R. (2011). Interactions of ammonium nitrate with different additives. J. Therm. Anal. Calorim. 105, 13–26. DOI: 0.1007/s10973-011-1514-9.
  • 22. Kaljuvee, T., Edro, E. & Kuusik, R. (2008). Influence of lime-containing additives on the thermal behaviour of ammonium nitrate. J. Therm. Anal. Calorim. 92, 215–21. DOI: 10.1007/s10973-007-8769-1.
  • 23. Popławski, D., Hoffmann, J., Hoffmann, K., Effect of carbonate minerals on the thermal stability of fertilisers containing ammonium nitrate. J. Therm. Anal. Calorim. 124, 1561–1574. DOI: 10.1007/s10973-015-5229-1.
  • 24. Pittman, W., Han, Z., Harding, B., Tosas, C., Jiang, J., Pineda, A. & Sam Mannan, M. (2014). Lessons to be learned from an analysis of ammonium nitrate disasters in the last 100 years. J. Hazard. Mater. 280, 472–477. DOI: 10.1016/j.hazmat.2014.08.037.
  • 25. Cao, H., Jiang, L., Duan, Q., Zhang, D., Chen, H. & Sun, J. (2019). An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. J. Hazard. Mater. 364, 539–547. DOI: 10.1016/j.jhazmat.2018.10.048.
  • 26. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.
  • 27. Skarlis, S.A., Nicolle, A., Berthout, D., Dujardin, C. & Granger, P. (2014). Combined experimental and kinetic modeling approaches of ammonium nitrate thermal decomposition. Thermochim. Acta. 584, 58–66. DOI: 10.1016/j.tca.2014.04.004.
  • 28. Izato, Y., Shiota, K. & Miyake, A. (2019). Condensed-phase pyrolysis mechanism of ammonium nitrate based on detailed kinetic model. J. Anal. Appl. Pyrol. DOI: 10.1016/j.jaap.2019.104671.
  • 29. Kaniewski, M., Hoffmann, K. & Hoffmann, J. (2019). Infl uence of selected potassium salts on thermal stability of ammonium nitrate. Thermochim. Acta. 678. DOI: 10.1016/j.tca.2019.178313.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e358f65-81e8-467b-81a5-942eeb3e0c3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.