PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Machine Learning Models for Predicting Soil Texture Using Sentinel-1A SAR and Topographic Information

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applications such as agriculture, hydrology, and environmental management need the mapping of soil texture. In a research region near the Great Zab River in Iraq, this study assessed machine learning models for predicting important soil texture qualities using Sentinel-1A radar and digital elevation data. 75 soil samples in all were gathered, and their percentages of clay, silt, gravel, sand, and moisture content were determined. The models that were examined were artificial neural network (ANN), decision tree (DT), random forest (RF), support vector regression (SVR), and logistic regression (LR). Based on test data, results indicated that RF had the lowest root mean squared error (RMSE) in terms of forecasting clay (0.072 percent), specific gravity (0.011), gravel (10.736 percent), sand (10.213 percent), and silt (1.051 percent). Additionally, it had the greatest coefficient of determination (R2) values for clay (0.900), silt (0.883), sand (0.474), specific gravity (0.519), and gravel (0.568). When it came to predicting moisture content, ANN excelled (RMSE 2.515, R2 0.776). According to the RF feature significance scores, elevation was determined to be the most significant input variable. The study showed that precise maps of soil texture prediction may be obtained by utilizing RF machine learning in conjunction with Sentinel-1A data and digital elevation models. This provides an effective way for mapping soil properties in remote places with minimal effort.
Twórcy
  • Geomatic Engineering Department, Engineering Technical College of Mosul, Northern Technical University, Mosul 41002, Iraq
  • Geomatic Engineering Department, Engineering Technical College of Mosul, Northern Technical University, Mosul 41002, Iraq
  • Geomatic Engineering Department, Engineering Technical College of Mosul, Northern Technical University, Mosul 41002, Iraq
Bibliografia
  • 1. Aliero, M.M., Ismail, M.H., Alias, M.A., Alias Mohd, S., Abdullahi, S., Kalgo, S.H., Kwaido, A.A. 2018. Assessing Soil Physical Properties Variability and Their Impact on Vegetation Using Geospatial Tools in Kebbi State, Nigeria. IOP Conference Series: Earth and Environmental Science, 169(1), 012111. https://doi.org/10.1088/1755-1315/169/1/012111
  • 2. Ana, C., Ferreira, C., Ceddia, M.B., Costa E.M., Pinheiro, E.F.M., do Nascimento M.M., Vasques G.M. 2022. Use of airborne radar images and machine learning algorithms to map soil clay, silt, and sand contents in remote areas under the Amazon Rainforest. Remote Sensing, 14(22), 5711–5711. https://doi.org/10.1088/10.3390/rs14225711
  • 3. Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., LiliChabaane, Z., Baghdadi, N.N., Aissa, N.B., Mougenot, B. 2019. Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing, 11, 1520.
  • 4. Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., LiliChabaane, Z., Baghdadi, N., Aissa, N., Mougenot, B. 2019. Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing, 11, 1520. https://doi.org/10.3390/RS11131520
  • 5. Ferreira, A.C.D.S., Ceddia, M.B., Costa, E.M., Pinheiro, É.F., Nascimento, M.M.D., Vasques, G.M. 2022. Use of airborne radar images and machine learning algorithms to map soil clay, silt, and sand contents in remote areas under the Amazon Rainforest. Remote Sensing, 14(22), 5711.
  • 6. Forkuor, G., Hounkpatin, O., Welp, G., Thiel, M. 2017. High resolution mapping of soil properties using remote sensing variables in South-Western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12. https://doi.org/10.1371/journal.pone.0170478
  • 7. Gorrab, A., Zribi, M., Baghdadi, N., Lili Chabaane, Z. 2015. Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region. In C. M. U. Neale & A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII 9637, 96371F. SPIE. https://doi.org/10.1117/12.2194947
  • 8. Hengl, T., Jesus, J., Heuvelink, G., González, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M., Geng, X., Bauer-Marschallinger, B., Guevara, M., Vargas, R., MacMillan, R., Batjes, N., Leenaars, J., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12. https://doi.org/10.1371/journal.pone.0169748
  • 9. Ismaiel, I.A., Bird, G., McDonald, M.A., Perkins, W.T., Jones, T.G. 2018. Establishment of background water quality conditions in the Great Zab River catchment: influence of geogenic and anthropogenic controls on developing a baseline for water quality assessment and resource management. Environmental Earth Sciences, 77, 1–12.
  • 10. Karray, E., Elmannai, H., Toumi, E., Gharbia, M.H., Meshoul, S., Aichi, H., Ben Rabah, Z. 2023. Evaluating the potentials of PLSR and SVR models for soil properties prediction using field imaging, laboratory VNIR spectroscopy and their combination. Comput. Model. Eng. Sci, 136, 1399–1425.
  • 11. Laurent, F., Poccard-Chapuis, R., Plassin, S., Pimentel Martinez, G. 2017. Soil texture derived from topography in North-eastern Amazonia. Journal of Maps, 13(2), 109–115. https://doi.org/10.1080/17445647.2016.1266524
  • 12. Liang, S., Zhang M., Wang B. 2023. Predictive soil mapping based on the similarity of environmental covariates using a spatial convolutional autoencoder. Soil Science Society of America Journal, 87(3), 631–643. https://doi.org/10.1002/saj2.20527
  • 13. Liu, J., Huffman, T., Green, M. 2018. Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada. Land Use Policy, 75(75), 33–42. https://doi.org/10.1016/j.landusepol.2018.03.032
  • 14. Lu, L., Liu, C., Li, X., Ran, Y. 2017. Mapping the soil texture in the heihe river basin based on fuzzy logic and data fusion. Sustainability, 9(7), 1246. https://doi.org/10.3390/su9071246
  • 15. Maino, A., Alberi, M., Anceschi, E., Chiarelli, E., Cicala, L., Colonna, T., De Cesare, M., Guastaldi, E., Lopane, N., Mantovani, F., Marcialis, M., Martini, N., Montuschi, M., Piccioli, S., Raptis, K.G.C., Russo, A., Semenza, F., Strati, V. 2022. Airborne radiometric surveys and machine learning algorithms for revealing soil texture. Remote Sensing, 14(15), 3814.
  • 16. Matazi, A.K., Gognet, E.E., Kakaï, R.G. 2024. Digital soil mapping: a predictive performance assessment of spatial linear regression, Bayesian and ML-based models. Modeling Earth Systems and Environment, 10(1), 595–618.
  • 17. Mohamed, M. 2020. Classification of landforms for digital soil mapping in urban areas using LiDAR Data derived terrain attributes: A case study from Berlin, Germany. Land, 9(9), 319. https://doi.org/10.3390/land9090319
  • 18. Mohammadi, M., Shabanpour, M., Mohammadi, M.H., Davatgar, N. 2017. Characterizing spatial variability of soil textural fractions and fractal parameters derived from particle size distributions. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60425-9
  • 19. Naimi, S., Ayoubi, S., Demattê, J., Zeraatpisheh, M., Amorim, M., Mello, F. 2021. Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto International, 37, 8230–8253. https://doi.org/10.10 80/10106049.2021.1996639
  • 20. Niang, M., Nolin, M., Jégo, G., Perron, I. 2014. Digital mapping of soil texture using RADARSAT-2 polarimetric synthetic aperture radar data. Soil Science Society of America Journal, 78, 673–684. https://doi.org/10.2136/SSSAJ2013.07.0307
  • 21. Pacheco, A., McNairn, H., Mahmoodi, A., Champagne, C., Kerr, Y.H. 2015. The impact of national land cover and soils data on SMOS soil moisture retrieval over canadian agricultural landscapes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(11), 5281–5293. https://doi.org/10.1109/JSTARS.2015.2417832
  • 22. Periasamy, S., Senthil, D., Shanmugam, R. 2019. A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar. Geocarto International, 36, 581–598. https://doi.org/10.1080/10106049.2019.1618924
  • 23. Rengma, N.S., Yadav, M., Kalambukattu, J.G., Kumar, S. 2023. Machine learning-based digital mapping of soil organic carbon and texture in the midHimalayan terrain. Environmental Monitoring and Assessment, 195(8), 994. https://doi.org/10.1007/s10661-023-11608-9
  • 24. Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., Zalidis, G. 2020. Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data. Remote Sensing, 12(9), 1389.
  • 25. Ulaby, F.T., Dubois, P.C., van Zyl, J. 1996. Radar mapping of surface soil moisture. Journal of Hydrology, 184(1–2), 57–84. https://doi.org/10.1016/0022-1694(95)02968-0
  • 26. Vos, C., Don, A., Prietz, R., Heidkamp, A., Freibauer, A. 2016. Field-based soil-texture estimates could replace laboratory analysis. Geoderma, 267, 215–219. https://doi.org/10.1016/j.geoderma.2015.12.022
  • 27. Wadoux, A., Padarian, J., Minasny, B. 2018. Multi-source data integration for soil mapping using deep learning. SOIL. https://doi.org/10.5194/SOIL-5-107-2019
  • 28. Whisler, K.M., Rowe, H.I., Dukes, J.S. 2016. Relationships among land use, soil texture, species richness, and soil carbon in Midwestern tallgrass prairie, CRP and crop lands. Agriculture, Ecosystems & Environment, 216, 237–246. https://doi.org/10.1016/j.agee.2015.09.041
  • 29. Zhang, M., Shi, W. 2019. Systematic comparison of five machine-learning methods in classification and interpolation of soil particle size fractions using different transformed data. Hydrology and Earth System Sciences Discussions, 1–39. https://doi.org/10.5194/hess-2018-584
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e33905c-7b2d-47f4-90db-e2471bce21c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.