Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The design and optimization process of modern telecommunications networks is supported by a range of appropriate analytical models. A number of these models are based on the Erlang’s Ideal Grading (EIG) model, which is a particular case of non-full-availability groups. A possibility of the application of the EIG model results from the fact that telecommunications systems show properties and features distinctive to non-full-availability systems. No detailed studies that would decisively help determine appropriate conditions for the application of the EIG model for modeling of other non-full-availability groups, that would be models corresponding to real telecommunications systems, have been performed. Therefore, this article attempts to find an answer to the following question: what are the prerequisite conditions for the application of the EIG model and when the model can be reliably used?
Słowa kluczowe
Rocznik
Tom
Strony
37--43
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Faculty of Electronics and Telecommunication, Poznan University of Technology, Polanka st 3, 60-965 Poznan, Poland
autor
- Faculty of Electronics and Telecommunication, Poznan University of Technology, Polanka st 3, 60-965 Poznan, Poland
Bibliografia
- [1] „Ericsson Mobility Report", Tech. Rep., Ericsson, 2014.
- [2] „Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014-2019 - white paper", Tech. Rep., Cisco, 2015.
- [3] J. Roberts, „Teletraffic models for the Telcom 1 integrated services network", in Proc. 10th Int. Teletraff. Congr. ITC 83, Montreal, Canada, 1983, p. 1.1.2.
- [4] P. Tran-Gia and F. Hübner, „An analysis of trunk reservation and grade of service balancing mechanisms in multiservice broadband networks", in Modelling and Evaluation of ATM Networks, H. G. Perros, G. Pujolle, and Y. Takahashi, Eds., IFIP Trans., vol. C-15, pp. 83-97. Amsterdam: North-Holland, 1993.
- [5] M. Stasiak and S. Hanczewski, „Approximation for multi-service systems with reservation by systems with limited-availability", in 5th European Performance Engineering Workshop, N. Thomas and C. Juiz, Eds., LNCS, vol. 5261, pp. 257-267. Palma de Mallorca, Spain: Springer, 2008.
- [6] M. Głąbowski, A. Kaliszan, and M. Stasiak, „Modeling productform state-dependent systems with BPP traffic", J. Perform. Eval., vol. 67, no. 3, pp. 174-197, 2010.
- [7] I. D. Moscholios, J. S. Vardakas, M. D. Logothetis, and A. C. Boucouvalas, „Congestion probabilities in a batched poisson multirate loss model supporting elastic and adaptive traffic", Annales des Télécommun., vol. 68, no. 5-6, pp. 327-344, 2013.
- [8] J. Kaufman, „Blocking with retrials in a completly shared recource environment", J. Perform. Eval., vol. 15, no. 2, pp. 99-113, 1992.
- [9] S. Rácz, B. P. Gerö, and G. Fodor, „Flow level performance analysis of a multi-service system supporting elastic and adaptive services", Perform. Eval., vol. 49, no. 1-4, pp. 451-469, 2002.
- [10] M. Sobieraj, M. Stasiak, J. Weissenberg, and P. Zwierzykowski, „Analytical model of the single threshold mechanism with hysteresis for multi-service networks", IEICE Trans. Commun., vol. E95-B, no. 1, pp. 120-132, 2012.
- [11] I. Moscholios, M. Logothetis, and G. Kokkinakis, „Connectiondependent threshold model: a generalization of the Erlang multiple rate loss model", Perform. Eval., vol. 48, no. 1-4, pp. 177-200, 2002.
- [12] M. Stasiak, M. Głąbowski, A. Wiśniewski, and P. Zwierzykowski, Modeling and Dimensioning of Mobile Networks. Wiley, 2011.
- [13] M. Stasiak, P. Zwierzykowski, J. Wiewióra, and D. Parniewicz, „An approximate model of the WCDMA interface servicing a mixture of multi-rate traffic streams with priorities", in Computer Performance Engineering, D. Parniewicz, M. Stasiak, J. Wiewióra, and P. Zwierzykowski, Eds. LNCS, vol. 5261, pp. 168-180. Springer, 2008 (doi: 10.1007/978-3-540-87412).
- [14] L. Katzschner and R. Scheller, „Probability of loss of data traffics with different bit rates hunting one common PCM-channel", in Proc. 8th Int. Teletraff. Congr., Melbourne, Australia, 1976, pp. 525/1-8.
- [15] K. Subramaniam and A. A. Nilsson, „An analytical model for adaptive call admission control scheme in a heterogeneous UMTSWCDMA system", in Proc. IEEE Int. Conf. Commun. ICC 2005, Seoul, South Korea, 2005, vol. 5, pp. 3334-3338.
- [16] A. Fredericks, „Congestion in blocking systems - a simple approximation technique", Bell System Tech. J., vol. 59, no. 6, pp. 805-827, 1980.
- [17] M. Głąbowski, K. Kubasik, and M. Stasiak, „Modeling of systems with overow multi-rate traffic", Telecommun. Syst., vol. 37, no. 1-3, pp. 85-96, 2008.
- [18] M. Głąbowski, S. Hanczewski, and M. Stasiak, „Erlang's ideal grading in diffserv modelling", in Proc. IEEE Africon 2011, Livingstone, Zambia, 2011, pp. 1-6.
- [19] M. Głąbowski, A. Kaliszan, and M. Stasiak, „Two-dimensional convolution algorithm for modelling multiservice networks with overow traffic", Mathem. Problems in Engin., vol. 2013, p. 18, 2013 (article ID 852082).
- [20] J. Kaufman, „Blocking in a shared resource environment", IEEE Trans. Commun., vol. 29, no. 10, pp. 1474-1481, 1981.
- [21] J. Roberts, „A service system with heterogeneous user requirements - application to multi-service telecommunications systems", in Performance of Data Communications Systems and their Applications, G. Pujolle, Ed. Amsterdam: North Holland, 1981, pp. 423-431.
- [22] M. Stasiak, „Blocking probability in a limited-availability group carrying mixture of different multichannel traffic streams", Annales des Télécommun., vol. 48, no. 1-2, pp. 71-76, 1993.
- [23] E. Brockmeyer, H. Halstrom, and A. Jensen, „The life and works of A. K. Erlang", Acta Polytechnika Scandinavia, vol. 6, no. 287, 1960.
- [24] V. Eršov, „Rasčët komutacionnych sistem metodom rasdel'nyh poter"', in Sistemy massovogo obsluživaniâ i kommutacii, Moscow: Nauka, 1974, pp. 54-66 (in Russian).
- [25] V. Eršov, „Srednââ dostupnost' i rekurrentnyj rasčët poter' v kommutacionnych sistemah", in Sistemy upravleniâ setâmi, Moscow: Nauka, 1980, pp. 121-126 (in Russian).
- [26] M. Stasiak, „An approximate model of a switching network carrying mixture of different multichannel traffic streams", IEEE Trans. Commun., vol. 41, no. 6, pp. 836-840, 1993.
- [27] M. Stasiak and S. Hanczewski, „A model of WCDMA radio interface with reservation", in Proc. Int. Symp. Inform. Theory and Its Appl. ISITA 2008, Auckland, New Zeland, 2008.
- [28] S. Hanczewski and M. Stasiak, „Performance modelling of video-ondemand systems", in Proc. 17th Asia-Paciffic Conf. Commun. APCC 2011, Kuala Lumpur, Malaysia, 2011, pp. 784 -788.
- [29] M. Głąbowski, S. Hanczewski, and M. Stasiak, „Modelling of cellular networks with traffic overow", Mathem. Problems in Engin., vol. 2015, p. 158, 2015 (article ID 286490).
- [30] Broadband Network Teletraffic, Final Report of Action COST 242, J. Roberts, V. Mocci, and I. Virtamo, Eds. Berlin: Springer, 1996.
- [31] M. Stasiak, M. Głąbowski, and S. Hanczewski, „The application of the Erlang's Ideal Grading for modelling of UMTS cells", in 8th Int. Symp. Commun. Syst., Netw. Digit. Sig. Process. CSNDSP 2012, Poznan, Poland, 2012, pp. 1-6.
- [32] A. Jajszczyk, Wstęp do Telekomutacji. Wydawnictwa Naukowo-Techniczne, 1998 (in Polish).
- [33] M. Głąbowski, S. Hanczewski, M. Stasiak, and J. Weissenberg, „Modeling Erlang's Ideal Grading with multirate BPP traffic", Mathem. Problems in Engin., vol. 2012, p. 35, 2012 (article ID 456910).
- [34] J. Tyszer, Object-Oriented Computer Simulation of Discrete-Event Systems. Kluwer, 1999.
- [35] S. Hanczewski and M. Stasiak, „Point-to-group blocking in 3-stage switching networks with multicast traffic streams", in Proceedings of First International Workshop (SAPIR 2004), P. Dini, P. Lorenz, and J. N. de Souza, Eds. LNCS, vol. 3126, pp. 219-230. Springer, 2004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e293c1a-778f-4dd5-97d6-bafbe99ef02c