PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advancements in transition to green steel in Europe through direct reduced iron production

Identyfikatory
Warianty tytułu
PL
Postępy w przejściu na zieloną stal w Europie poprzez produkcję żelaza gąbczastego
Języki publikacji
EN
Abstrakty
EN
This article describes the current situation in Europe regarding methods of steel production and transition to green steel, produced in a sustainable way, i.e. with renewable energy and without fossil fuels, in order to reduce greenhouse gas emissions. The study focuses on direct reduction (DR) as potentially the best technology to eliminate the use of fossil fuels in the steel industry. The main commercial processes of direct reduced iron (DRI) production such as MIDREX, Energiron, PERED, SL/RN, Fastmet and Circored are described and compared in terms of the quality of finished products, operational conditions and efficiency. The article presents recent statistics regarding the production capacity of DRI, comparing Europe with the rest of the world. Plans concerning the construction of DRI plants across Europe are summarised alongside other projects aimed to support the process of transition to green steel by providing environmentally friendly materials or increasing efficiency of already implemented technologies by recycling waste materials.
PL
Niniejszy artykuł opisuje obecną sytuację w Europie w zakresie metod produkcji stali i przejścia na zieloną stal w celu zmniejszenia emisji gazów cieplarnianych. Koncentruje się na bezpośredniej redukcji (DR) jako potencjalnie najlepszej technologii eliminującej zużycie paliw kopalnych w przemyśle stalowym. Główne komercyjne procesy produkcji bezpośrednio redukowanego żelaza (DRI), takie jak MIDREX, Energiron, PERED, SL/RN, Fastmet i Circored, zostały opisane i porównane pod względem jakości produktu końcowego, warunków operacyjnych i wydajności. Przedstawiono najnowsze statystyki dotyczące zdolności produkcyjnych DRI, porównując Europę i resztę świata. Ogłoszone plany budowy zakładów DRI w całej Europie zostały podsumowane wraz z innymi projektami, które mają na celu pomoc w przejściu na zieloną stal poprzez dostarczanie materiałów przyjaznych dla środowiska lub zwiększenie wydajności już wdrożonych technologii poprzez recykling materiałów odpadowych.
Twórcy
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland
Bibliografia
  • [1] Basirat S., Nicholas S.: The facts about steelmaking – Steelmakers seeking Green steel, 14.06.2022. [Online]. Available: https://ieefa.org/resources/facts-about-steelmaking-steelmakers-seeking-green-steel. [Accessed 20.02.2024].
  • [2] World Steel Association, World Steel in Figures 2023, 2023. [Online]. Available: https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/. [Accessed 20 02 2024].
  • [3] Carbon Market Watch, Decarbonising steel, Options for reforming the EU’s emissions trading system, 2022.
  • [4] Wang R., Zhao Y., Babich A., Senk X.F.D.: Hydrogen direct reduction (H-DR) in steel industry – An overview of challenges and opportunities. Journal of Cleaner Production, 2021, vol. 329, 129979.
  • [5] Remus R., Aguado Monsonet M., Roudier S., Delgado Sancho L.: Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control. Publications Office of the European Union, 2013.
  • [6] International Iron Metallics Association, “DRI production,” [Online]. Available: https://www.metallics.org/dri-production.html. [Accessed 10.03.2024].
  • [7] MIDREX, “History,” [Online]. Available: https://www.midrex.com/history/. [Accessed 03.18.2024].
  • [8] MIDREX, MIDREX® Ironmaking Technology for a Sustainable Steel Industry, 2023.
  • [9] Atsushi M., Uemura H., Sakaguchi T.: MIDREX Processes. KOBELCO Technology Review, 2010, 12, pp. 50-57.
  • [10] Lüngen H.B., Schmöle P.: History, developments and processes of direct reduction of iron ores. [In:] 8 th European Coke and Ironmaking Congress and the 9 th International Conference on Science and Technology of Ironmaking, Bremen, 2022.
  • [11] “energiron.com,” Tenova and Danieli, 2020. [Online]. Available: https://www.energiron.com/wp-content/uploads/2020/01/Energiron_Brochure-2020.pdf. [Accessed 22.02.2024].
  • [12] Aziztaemeh H.: The Middle East Mines and Metals News Agency. [Online]. Available: https://felezatkhavarmianeh.ir/Panel/Attachments/636743836333436918.pdf. [Accessed 20.02.2024].
  • [13] Kekkonen M., Holappa L.: Comparison of different coal based direct reduction processes. Helsinki University of Technology Publications in Materials Science and Metallurgy, 2000.
  • [14] Metso, “SL/RN process”. [Online]. Available: https://www.metso.com/portfolio/slrn-process/. [Accessed 22.02.2024].
  • [15] Meyer K., Heitmann G. Janke W.:The SL/RN Process For Production of Metallized Burden. Journal of Metals, 1966, vol. 18, pp. 748-752.
  • [16] Tsutsumi H., Yoshida S., Tetsumoto M.: Features of FASTMET Process. Kobelco Technology Review, 2010, no. 12, p. 85-92.
  • [17] MIDREX, “Midrex-Plants-Sheet2023,” 03 2023. [Online]. Available: https://www.midrex.com/wp-content/uploads/Midrex-Plants-Sheet2023.pdf. [Accessed 23.02.2024].
  • [18] Mohsenzadeh F.M., Payab H., Abdoli A., Abedi Z.: An environmental study on Persian direct reduction (PERED®) technology: Comparing capital cost and energy saving with MIDREX® technology. Ekoloji, 2018, vol. 27, no 106, pp. 959-967.
  • [19] Najmossadat S.M.R.: Shaft furnace for the direct reduction of iron oxide. Germany Patent DE102006062689B4, 2006.
  • [20] Erwee M., Pistorius P.Ch.: Nitrogen in SL/RN direct reduced iron: Origin and effect on nitrogen control in EAF steelmaking. Ironmaking & Steelmaking, 2012, vol. 39, no. 5, pp. 336-341.
  • [21] Mróz J.: Recykling i utylizacja materiałów odpadowych w agregatach metalurgicznych. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 2006.
  • [22] Gojić M., Kožuh S.: Development of Direct Reduction Process and Smelting Reduction Processes for the Steel Production. Kemija u Industriji, 2006, vol. 55, no. 1, pp. 1-10.
  • [23] MIDREX, “World direct reduction statistisc,” 2022.
  • [24] ArcelorMittal, [Online]. Available: https://barsandrods.arcelormittal.com/mills/hamburg. [Accessed 23.02.2024].
  • [25] LeadIT, “Green Steel Tracker,” [Online]. Available: https://www.industrytransition.org/green-steel-tracker/. [Accessed 03.03.2024].
  • [26] H2 Green Steel, H2 Green Steel raises more than €4 billion in debt financing for the world’s first large-scale green steel plant. [Online]. Available: https://www.h2greensteel.com/latestnews/h2-green-steel-raises-more-than-4-billion-in-debt-financing-for-the-worlds-first-large-scale-green-steel-plant?gad_source=1&gclid=EAIaIQobChMIyK73qtj_hAMVhBEGAB1F-cAQFEAAYASACEgJZnfD_BwE. [Accessed 19.03.2024].
  • [27] Myszor P.: ArcelorMittal o planach dekarbonizacji – nowe technologie także w Polsce. [Online]. Available: https://www.wnp.pl/hutnictwo/arcelormittal-o-planach-dekarbonizacji-nowe-technologie-takze-w-polsce,496996.html. [Accessed 19 03 2024].
  • [28] H2 Green Steel, H2 Green Steel and Iberdrola announce €2.3 billion Green hydrogen venture. 02 12 2021. [Online]. Available: https://www.h2greensteel.com/latestnews/h2-green-steel-and-iberdrola-announce-23-billion-green-hydrogen-venture. [Accessed 13.03.2024].
  • [29] Kolisnichenko V.: EC approves €4.6 billion for German hydrogen projects. [Online]. Available: https://gmk.center/en/news/ec-approves-e4-6-billion-for-german-hydrogen-projects/. [Ac- cessed 13.03.2024].
  • [30] Hydrogen Europe, Clean Hydrogen Monitor 2023, 2023. [Online]. Available: https://hydrogeneurope.eu/wp-content/uploads/2023/10/Clean_Hydrogen_Monitor_11-2023_DIGITAL.pdf. [Accessed 14.03.2024].
  • [31] Hodges A., Hoang, A.L. Wagner K., Lee C.-Y., Swiegers G.F., Wallace, G.G.: A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications, 2022, 13, art. no. 1304.
  • [32] Australian Renewable Energy Agency, “Hysata – High-Efficiency ‘Capillary-fed’ Electrolyser Pilot Project,” [Online]. Available: https://arena.gov.au/projects/high-efficiency-capillary-fed-electrolyser-pilot-project/. [Accessed 19.04.2024].
  • [33] Benavides K., Gurgel A., Morris J., Mignone B., Chapman B., Kheshgi H., Herzog H., Paltsev S.: Mitigating emissions in the global steel industry: Representing CCS and hydrogen technologies in integrated assessment modeling. International Journal of Greenhouse Gas Control, 2024, 131, art. No.103963.
  • [34] Mayer J., Bachner G., Steininger K.W.: Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. Journal of Cleaner Production, 2019, 210, p. 1517-1533.
  • [35] Olsson O., Nykvist B.: Bigger is sometimes better: demonstrating hydrogen steelmaking at scale. SEI working paper. Stock- holm Environment Institute, Stockholm, 2020.
  • [36] Iacob N, Vu H., Cecchin F., Stroia C.: Climate-neutral Steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations, Stroia C.(editor), Iacob N.(editor). Publications Office of the European Union, 2022, HYPERLINK “https://data.europa.eu/doi/10.2848/96439” \t “_blank” https://data.europa.eu/doi/10.2848/96439 .
  • [37] “MaxH2DR,” [Online]. Available: https://www.estep.eu/clean-steel-partnership/list-of-csp-projects/maxh2dr/project-overviewnouveau-link-page/. [Accessed 14.03.2024].
  • [38] “TransZeroWaste,” [Online]. Available: https://transzerowaste.eu/. [Accessed 14.03.2024].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e20cd0c-9b3e-40a5-814d-b077523338fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.