PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on condition prediction and influencing factors of manganese carbonate recovery by high gradient pulse magnetic separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manganese carbonate ore belongs to weakly magnetic minerals, and its co-associated minerals are mainly non-magnetic minerals, which can be separated from gangue minerals at high magnetic field intensity. However, manganese grade and recovery of magnetic separation concentrate of manganese carbonate ore are low in actual production. Therefore, the influences of manganese carbonate particle size, magnetic field intensity, volume susceptibility, pulse stroke, pH, and other factors were studied. The optimal test conditions for manganese carbonate ore recovery by high-gradient magnetic separation were predicted through the calculation results. The results show that the particle radius of manganese carbonate is 0.020 mm, the pulse impulse time is 200 r/min, and the magnetic field intensity is 0.9 T. The optimum condition test was carried out with Qianbei manganese carbonate ore as the material. The test results show that the optimum conditions are the particle radius of 0.074-0.019 mm, pulse impulse time of 200 r/min, and magnetic field intensity of 1.2 T. The reason for the deviation is that the actual ore has a fine distribution particle size, many associative bodies, complex composition, and serious agglomeration, resulting in variable particle volume susceptibility. The capture yield increases with the increase of magnetic field intensity and volume susceptibility but decreases with the increase of pulse. The lower the surface potential of manganese carbonate, the higher the recovery of manganese carbonate. The grade of manganese concentrate was 19.06% and the recovery was 76.85%. Mixed manganese concentrate with a grade of 18.04% and recovery of 87.14% was obtained by adding drugs and changing the grinding method.
Rocznik
Strony
art. no. 168668
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • School of Mining and Technology, Guizhou University, China 550025
autor
  • School of Mining and Technology, Guizhou University, China 550025
autor
  • School of Mining and Technology, Guizhou University, China 550025
autor
  • School of Mining and Technology, Guizhou University, China 550025
autor
  • Ganzhou Jinhuan Magnetic Separation Equipment Co., LTD, Jiangxi China 341000
Bibliografia
  • BLOCHL, P.E., 1994. Projector augmented-wave method. Phys. Rev. B 50, 17953−17979.
  • KRESSE, G., FURTHMULLER, J., 1996. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci, 15−50.
  • KRESSE, G., FURTHMULLER, J., 1996. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 11169−11186.
  • KRESSE, G., JOUBERT, D., 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1758-1775.
  • PAN, J.B., LIU, Z. S., 2016. Experimental study on beneficiation of a low-grade manganese carbonate ore in Guangxi. Yunnan Metallurgy, 45(04), 25-28.
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 3865−3868.
  • TANG, Z.H., QUE, S.J., 2017. Experimental study on mineral processing of a high-sulfur and low-grade manganese carbonate ore in Guangxi. Non-ferrous Metal (Ore-dressing part), (05), 51-54.
  • WANG, D.Z., QIU, G.Z., HU, Y.H., 1993. Interparticle interaction and fine grain mineral processing. Central South University of Technology Press.
  • XIONG, D.H., LIU, S.Y., LIU, Y.Z., CHEN, J., 1989. Effect of stroke on mineral processing index in pulsating high gradient magnetic separation. Journal of Zhongnan Institute of Mining and Metallurgy, 20(05), 497-504.
  • XIONG, D.H.,. 1994. Improvement of SLon vertical ring pulsation high gradient magnetic separator and its application in red ore beneficiation. Metal Mine, (6), 30-34.
  • XIONG, D.H., LIU, S.Y., CHEN, J., 1998. New technology of pulsating high gradient magnetic separation. International Journal of Minerals Processing, (07), 111-127.
  • XIONG, D.H., YANG, Q.G., TANG, G.W., QIAN, S.H., 2000. Industrial experiment study on improving the production index of Gushan Iron Mine. Metal Mines, (12), 31-33.
  • XIONG, D.H., 2002. Application of SLon type magnetic separator in Qishan mountain concentrator. Metal mine, (04), 42-44.
  • XIONG, D.H., 2003. Application of SLon magnetic separator for sorting of oxidized iron ore in East Anshan. Metal mine, (06), 21-26.
  • YUAN, Z.T., WANG, C.R., 2022. Magnetic and electric mineral processing. Beijing Metallurgical Industry Press.
  • ZHANG, X.F., QIN, S.Y., ZHOU, Q., 2016. The process mineralogy and beneficiation test research of a high-calcium type manganese ore in Hunan province. Hunan Nonferrous Metals, 32 (05), 4-8.
  • ZHANG, Z.W., CHEN, W.X., HUANG, Y.L., 2018. Mineralogy and beneficitest of a low grade manganese carbonate mine in Guizhou. Comprehensive Utilization of Minerals, 38(04), 66-69.
  • ZHENG, X.Y., SUN, Z.Y., WANG, X.M., 2019. Magnetic separation theory. Central South University Press.
  • ZOU, S., LIU, S.J., QIN, W.Q., 2014. A low grade difficult manganese carbonate beneficiation test study. Mining and Metallurgy Engineering, 34 (03), 44-46.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e1b4c8b-d1f5-4319-97f4-a708598a080e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.