PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrostruktura i przewodnictwo cieplne powłokowych barier cieplnych typu DCL-Gd2Zr2O7/8YSZ

Autorzy
Identyfikatory
Warianty tytułu
EN
Microstructure and thermal conductivity of DCL-Gd2Zr2O7/8YSZ thermal barrier coatings
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki oceny mikrostruktury oraz podstawowych właściwości cieplnych powłokowych barier cieplnych typu Gd2Zr2O7/8YSZ otrzymanych metodą natrysku plazmowego APS na stopie niklu AMS5599 z warstwą podkładową NiCrAlY. Scharakteryzowano mikrostrukturę i topografię zewnętrznej warstwy ceramicznej i określono jej skład fazowy. Określono grubość warstwy ceramicznej, a także jej porowatość, określając udział porów sferycznych, horyzontalnych i wertykalnych. Dokonano również pomiaru dyfuzyjności cieplnej warstw ceramicznych w zakresie temperatury 25÷1100°C. Dyfuzyjność cieplną wyznaczono na podstawie modelu dwuwarstwowego uwzględniającego opór cieplny. Na podstawie tych pomiarów oraz wartości ciepła właściwego, gęstości i współczynnika rozszerzalności cieplnej obliczono wartość przewodnictwa cieplnego warstw TBC. Uzyskane wyniki efektywnego przewodnictwa cieplnego skorygowano, uwzględniając porowatość warstw ceramicznych.
EN
The results of microstructural investigations and characterization of basic insulation properties of Gd2Zr2O7/8YSZ thermal barrier coatings deposited by the air plasma spraying method on AMS5599 Ni-based alloys with an NiCrAlY bondcoat are presented in this article. The microstructural characterization of the ceramic top-coat included morphology and topography descriptions of the surface as well as phase composition. The thickness of the ceramic layers and their porosity with detailed characterization of the spherical, vertical and horizontal pores was made. Thermal diffusivity measurements were performed within the temperature range of 25÷1100°C. The calculations were made on the basis of a double-layer model with thermal contact resistance. On the basis of these results and values of specific heat, density and thermal expansion coefficient, the thermal conductivity value was calculated. The obtained results were corrected from the porosity point of view.
Słowa kluczowe
Rocznik
Strony
252--257
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Instytut Nauki o Materiałach, Wydział Inżynierii Materiałowej i Metalurgii, Politechnika Śląska, Katowice
Bibliografia
  • [1] Cernusci F., Bianchi P., Leoni M., Scardi P.: Thermal diffusivity microstructure relationship in Y-PSZ thermal barrier coatings. Journal of Thermal Spray Technology 8 (1999) 102÷109.
  • [2] DeMasi-Marcin J. T., Gupta D. K.: Protective coatings in the gas turbine engine. Surface and Coating Technology 68-69 (1994) 1÷9.
  • [3] Wigren J., Pejryd L.: Thermal barrier coatings why, how, where and where to, thermal spray: meeting the challenges of the 21 st century, [in:] C. Coddet (Ed.), Proceedings of the 15 th International Thermal Spray Conference, ASM International (1998) 1531÷1542.
  • [4] Nelson W. A., Orenstein R. M.: TBC experience in land-based gas turbines. Journal of Thermal Spray Technology 6 (1997) 176÷180.
  • [5] Stover D., Funke C.: Directions of the development of thermal barrier coatings in energy applications. Journal of Materials Processing Technology 92-93 (1999) 195÷202.
  • [6] Vassen R., Tietz F., Kerkhoff G., Stoever D.: New materials for advanced thermal barrier coatings. Lecomte-Beckers J., Schuber F., Ennis P. J., (Ed.) Proceedings of the 6 th Liége Conference on Materials for Advanced Power Engineering (Universite de Liége, Belgium, November 1998) (1998) 1627÷1635.
  • [7] Thornton J., Majumdar B.: Ceria precipitation and phase stability in zirconia based thermal barrier coatings. [in:] A. Ohmori (Ed.), Proceedings of International Thermal Spray Conference on Thermal Spraying-Current-Status and Future Trends, Japan, ASM International, Materials Park, OH, USA (1995) 1075÷1080.
  • [8] Subramanian M. A., Sleight A. W.: Rare earth pyrochlores. Handbook on the physics and chemistry of rare earths. ed. Gschneider K. A., Erying L., Elsevier Science Publishers, Oxford, UK (1993) 225÷248.
  • [9] Vassen R., Cao X., Tietz F., Kerkhoff G., Stoever D.: La2Zr2O7 – a new candidate for thermal barrier coatings. Proceedings of the United Thermal Spray Conference’99 (Düsseldorf Germany, March 1999), Eds. Lugscheider E., Kammer P. A., ASM International, Verlag für Schweißen und Verwandte Verfahren, Düsseldorf (1999) 830÷834.
  • [10] Vassen R., Cao X., Tietz F., Basu D., Stoever D.: Zirconates as new materials for thermal barrier coatings. Journal of American Ceramic Society 83 (2000) 2023÷2028.
  • [11] Cao X., Vassen R., Jungen W., Schwartz S., Tietz F., Stoever D.: Thermal stability of lanthanum zirconate plasma-sprayed coating. Journal of American Ceramic Society 84 (2001) 2086÷2090.
  • [12] Vassen R., Cao X., Stoever D.: Improvement of new thermal barrier coating systems using layered or graded structure. M. Singh, T. Jessen (Eds.) Proceedings of the 25 th Annual International Conference on Composites, Advanced Ceramic, Materials, and Structures, The American Ceramic Society, Westerville, OH (2001) 435÷442.
  • [13] Cao X., Vassen R., Tietz F., Stoever D.: New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides. Journal of European Ceramic Society 26 (2006) 247÷251.
  • [14] Moskal G.: Charakterystyka mikrostruktury powłokowych warstw barierowych typu RE2Zr2O7. Inżynieria Materiałowa 4 (2010) 1107÷1112.
  • [15] Herman H.: Plasma sprayed coatings. Scientific American 259 (1998) 112÷117.
  • [16] Kulkarni A. et al.: Comprehensive microstructural characterization and predictive property modelling of plasma-sprayed zirconia coatings. Acta Materiallia 51 (2003) 2457÷2475.
  • [17] Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H.: Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Materiallia 51 (2003) 5319÷5334.
  • [18] Kittle C.: Introduction to solid state physics. Wiley, New York (1996).
  • [19] Abeles B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review 131 (1963) 1906÷1911.
  • [20] Slack G. A.: Effect of isotopes on low-temperature thermal conductivity. Physical Review 105 (1957) 829÷831.
  • [21] Yang J., Meisner G. P., Chen L.: Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applying Physical Letters 85 (2004) 1140÷1142.
  • [22] Golosnoy I. O., Cipitria A., Clyne T. W.: Sintering kinetics of plasma-sprayed zirconia TBCs. Journal of Thermal Spray Technology 18 (2009) 809÷815.
  • [23] Schlichting K. W., Padture N. P., Klemens P. G.: Thermal conductivity of dense and porous yttria stabilized zirconia. Journal of Materials Science 36 (2003) 3003÷3010.
  • [24] Klemens P. G.: Thermal conductivity of inhomogeneous media. High Temperatures-High Pressures 23 (1991) 241÷248.
  • [25] Jadhav A. D., Padture N. P., Jordan E. H., Gell M., Miranzo P., Fuller E. R.: Low thermal conductivity plasma-sprayed thermal barrier coatings with engineered microstructures. Acta Mater. 54 (2006) 3343÷3349.
  • [26] Maxwell J. C.: A treatise on electricity and magnetism. Clarendon Press, Oxford (1904).
  • [27] Shafiro B., Kachanov M.: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. Journal of Applied Physic 87 (2000) 8561÷8569.
  • [28] Seviostanov I., Kachanov M.: Plasma-sprayed ceramic coatings: Anisotropic elastic and conductive properties in relation to the microstructure; Cross-property correlations. Materials Science Engineering A 297 (2001) 235÷243.
  • [29] Cernuschi F., Ahmaniemi S., Vuoristo P., Mantyla T. J.: Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. Journal of European Ceramic Society 24 (2004) 2657÷2667.
  • [30] Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H.: Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Materiallia 51 (2003) 5319÷5334.
  • [31] Klemens P. G.: [in] Thermal Conductivity 23, edited by Wils K. E., Dinwiddie R. B., Graves R. S. Technomies Publishing Co., Lancaster, PA, USA (1996) 209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e153b67-685e-4e30-b1f3-cacdf336db8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.