PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of radionuclide concentration and exhalation studies in soil of lesser Himalayas of Jammu and Kashmir, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because to extensive utilization of soil as a building/construction stuff, the activities of 238U, 40K, 232Th, and exhalation studies in solid samples have been measured using thallium activated sodium iodide (NaI(Tl)) gamma detector and scintillation-based smart RnDuo monitor. The measured activity concentration of radionuclides lies in the range of 2.76–38.96, 12.47–65.70, and 199–450 Bq/kg for uranium (CU), thorium (CTh), and potassium (CK), respectively. The annual effective dose rate due to radionuclides is within the secure limit suggested by ICRP. The radium equivalent activity of all the samples is under 100 Bq/kg. The maximum outward and inside risk indices of all these samples are below the values of 0.37 and 0.43. No direct correlation has been seen between 238U and its mass exhalation rate as well as 232Th and its surface exhalation rate in soil samples.
Czasopismo
Rocznik
Strony
1195--1202
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Department of Physics D.A.V College Amritsar India
autor
  • Department of Physics D.A.V College Amritsar India
autor
  • Department of Physics D.A.V College Amritsar India
autor
  • Department of Applied Sciences I.K.G Punjab Technical University Jalandhar India
autor
  • Department of Applied Sciences Guru Kashi University Talwandi Sabo India
Bibliografia
  • 1. Abbady A, El-Arabi AM, Abbady AE, Taha S (2008) Gamma ray measurements of natural radioactivity in cultivated and reclaimed soil, Upper Egypt. In: International conference on radioecology and environmental radioactivity Norway, pp 15–20
  • 2. Agency for Toxic Substances and Disease Registery (ATSDR) (1999) Toxicological profile for uranium. Report TP-90-29, Atlanta, USA
  • 3. Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S (2017) Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2017.05.002
  • 4. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95
  • 5. Chauhan RP, Chauhan P, Pundir A, Kamboj S, Bansal V, Sainy RS (2014) Estimation of dose contribution from 226Ra, 232Th and 40K and radon exhalation rates in soil samples from Shivalik foot hills in India. Radiat Prot Dosim 158:79–86
  • 6. Gaware JJ, Sahoo BK, Sapra BK, Mayya YS (2011) Indigenous development and networking of online radon monitors in the underground uranium mine. Radiat Prot Environ 34:37–40
  • 7. Hursh JB, Spoor NL (1973) Data on man. In: Hodge HC, Standard JN, Hursh JB (eds) Uranium, plutonium transplutonic elements: handbook of experimental pharmacology. Springer, Berlin, pp 197–240
  • 8. IAEA (1987) Preparation and certixcation of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1, International Atomic Energy Agency, Vienna: IAEA/RL/148
  • 9. ICRP (1990) Recommendations of the international commission on radiological protection, dose limits and risks, publication 60
  • 10. Iqbal M, Tufail M, Mirza SM (2000) Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer. J Environ Radioact 51:255–265
  • 11. Jakhu R, Mehra R, Bangotra P, Kaur K, Mittal HM (2017) Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2017.03.002
  • 12. Kanse SD, Sahoo BK, Sapra BK, Gaware JJ, Mayya YS (2013) Powder sandwich technique: a novel method for determining the thoron emanation potential of powders bearing high 224Ra content. Radiat Meas 48:82–87
  • 13. Lussenhop AJ, Gallimore JC, Sweat WH, Struxness EG, Robinson J (1958) The toxicity in man of hexavalent uranium following intravenous admission. Am J Roentgenol 79:83–90
  • 14. Mazur J, Kozak K (2014) Complementary system for long term measurements of radon exhalation rate from soil. Rev Sci Instrum 85:022104. https://doi.org/10.1063/1.4865156
  • 15. Nambi KSV, Bapat VN, David M, Sundaram VK, Sunta CM, Soman SD (1987) Country-wide environmetal radiation monitoring using thermo luminescence dosimeters. Radiat Prot Dosim 18(1):31–38
  • 16. Organization for Economic Cooperation and Development (OECD) (1979) Exposure to radiation from the natural radioactivity in building materials. Report by a group of experts of the OECD Nuclear Energy Agency. OECD, France
  • 17. Ramola RC, Choubey VM, Prasad G, Gusain GS, Tosheva Z, Kies A (2011) Radionuclide analysis in the soil of Kumaun Himalaya, India, using gamma ray spectrometry. Curr Sci 100(6):906–914
  • 18. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170
  • 19. Sahoo BK, Nathwani D, Eappen KP, Ramachandran TV, Gaware JJ, Mayya YS (2007) Estimation of radon emanation factor in Indian building materials. Radiat Meas 42:1422–1425
  • 20. Sahoo BK, Agarwal TK, Gaware JJ, Sapra BK (2014) Thoron interference in radon exhalation rate measured by solid state nuclear track detector based can technique. J Radioanal Nucl Chem 302:1417–1420
  • 21. Saini S, Bajwa BS (2017) Mapping natural radioactivity of soil samples in different regions of Punjab. Appl Radiat Isot, India. https://doi.org/10.1016/j.apradiso.2017.05.013
  • 22. Schery SD, Gaeddert DH, Wilkening MH (1948) Factors affecting exhalation of radon from a gravelly sandy loam. J Geophys Res 89:7299–7302
  • 23. Schulz K (1965) Soil chemistry of radionuclides. Health Phys J 11:1317–1324
  • 24. Singh S, Sharma DK, Dhar S, Kumar A, Kumar A (2007) Uranium, radium and radon measurements in the environs of Nurpur area, Himachal Himalayas, India. Environ Monit Assess 128:301–309
  • 25. Singh P, Singh P, Bajwa BS, Sahoo BK (2016) Radionuclide contents and their correlation with radon-thoron exhalation in soil samples from mineralized zone of Himachal Pradesh, India. J Radioanal Nucl Chem 311(1):253–261
  • 26. Singh P, Singh P, Saini S, Bajwa BS (2017) Radionuclide measurements along with exhalation study in subsoil of southeast Haryana, India. Environ Earth Sci. https://doi.org/10.1007/s12665-017-6650-5
  • 27. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53
  • 28. United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources, effects and risks of ionizing radiation, report to the general assembly. United Nations, New York
  • 29. United Nations Scientific Committee on the effects of Atomic Radiation (UNSCEAR) (1982) Exposures resulting from nuclear explosions. United Nations Publication, New York, Annex E
  • 30. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008) Sources and biological effects of ionizing radiation. United Nations, New York
  • 31. Yadav M, Rawat M, Dangwal A, Prasad M, Gusain GS, Ramola RC (2015) Analysis of natural radionuclides in soil samples of Purola area of Garhwal Himalaya, India. Radiat Prot Dosim 167:215–218
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e138b39-6468-47e6-9741-5242a3f382a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.