PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bond Graph Modeling of Muscle-Tendon Actuationof a Phalange

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In musculoskeletal actuation systems, it is essential to understand and analyze the exten-sion and force patterns generated in the muscle-tendon units (MTUs) responsible for themotion of a phalange. This work proposes a systematically developed bond graph modelfor the muscle-tendon actuation system for the desired motion of the phalange of thehand. The phalange is represented by a cylindrical rigid body, actuated by four MTUsattached to it symmetrically. The MTU is based on Hill’s muscle model. The role of thecentral nervous system (CNS) that commands desired motions to the phalange is emulatedthrough a virtual domain in the model. The virtual domain decides the activation patternof MTUs. Accordingly, the MTUs apply forces on the phalange to achieve the desiredmotion. Simulation results for important motions such as flexion-extension, adduction-abduction, and circumduction show that the model effectively captures the dynamics ofthe musculoskeletal actuation system.
Rocznik
Strony
197--227
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Dr. B. R. Ambedkar National Instituteof Technology, Jalandhar, Punjab, India
autor
  • Department of Mechanical Engineering, Dr. B. R. Ambedkar National Instituteof Technology, Jalandhar, Punjab, India
Bibliografia
  • 1. J.N. Ingram, K.P. Körding, I.S. Howard, D.M. Wolpert, The statistics of natural hand movements, Experimental Brain Research , 188 (2): 223–236, 2008, doi: 10.1007/s00221-008-1355-3.
  • 2. A. Freivalds, Biomechanics of the Upper Limbs: Mechanics, Modeling and Musculoskeletal Injuries , CRC Press, Boca Raton, 2011.
  • 3. J.H.C. Wang, Q. Guo, B. Li, Tendon biomechanics and mechanobiology – A minireview of basic concepts and recent advancements, Journal of Hand Therapy , 25 (2): 133–141, 2012, doi: 10.1016/j.jht.2011.07.004.
  • 4. T.J. Roberts, A.M. Gabaldón, Interpreting muscle function from EMG: Lessons learned from direct measurements of muscle force, Integrative and Comparative Biology , 48 (2): 312–320, 2008, doi: 10.1093/icb/icn056.
  • 5. K.N. An, E.Y. Chao, W.P. Cooney, R.L. Linscheid, Forces in the normal and abnormal hand, Journal of Orthopaedic Research , 3 (2): 202–211, 1985, doi: 10.1002/jor.1100030210.
  • 6. M.E. Johanson, F.J. Valero-Cuevas, V.R. Hentz, Activation patterns of the thumb muscles during stable and unstable pinch tasks, Journal of Hand Surgery , 26 (4): 698–705, 2001, doi: 10.1053/jhsu.2001.26188.
  • 7. J.L. Sancho-Bru, A. Pérez-González, M. Vergara-Monedero, D. Giurintano, A 3-D dy- namic model of human finger for studying free movements, Journal of Biomechanics , 34 (11): 1491–1500, 2001, doi: 10.1016/S0021-9290(01)00106-3.
  • 8. L.A. Wojcik, Modeling of musculoskeletal structure and function using a modular bond graph approach, Journal of Franklin Institute , 340 (1): 63–76, 2003, doi: 10.1016/S0016-0032(03)00011-5.
  • 9. F. Chen Chen, S. Appendino, A. Battezzato, A. Favetto, M. Mousavi, F. Pescarmona, Constraint study for a hand exoskeleton: Human hand kinematics and dynamics, Journal of Robotics , 2013 : 910961, 2013, doi: 10.1155/2013/910961.
  • 10. A. Vaz, K. Singh, G. Dauphin-Tanguy, A Bond graph model for the actuation mecha- nism of musculo-skeletal joints, [in:] Volume 2: Automotive Systems; Bioengineering and 227 Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems , pp. 69– 75, 2008, doi: 10.1115/ESDA2008-59301.
  • 11. A. Vaz, K. Singh, G. Dauphin-Tanguy, Bond graph model of extensor mechanism of finger based on hook-string mechanism, Mechanism and Machine Theory , 91 : 187–208, 2015, doi: 10.1016/j.mechmachtheory.2015.03.011.
  • 12. N. Mishra, A. Vaz, Bond graph modeling of a 3-joint string-tube actuated finger prosthe- sis, Mechanism and Machine Theory , 117 : 1–20, 2017, doi: 10.1016/j.mechmachtheory.2017.06.018.
  • 13. M. Santello, G. Baud-Bovy, H. Jörntell, Neural bases of hand synergies, Frontiers in Computational Neuroscience , 7 (23): 1–15, 2013, doi: 10.3389/fncom.2013.00023.
  • 14. N. Mishra, A. Vaz, Development of trajectory and force controllers for 3-joint string- tube actuated finger prosthesis based on bond graph modeling, Mechanism and Machine Theory , 146 : 103719, 24 pages, 2020, doi: 10.1016/j.mechmachtheory.2019.103719.
  • 15. R. Drake, A. Vogl, A. Mitchell, Gray’s Anatomy for Students , 3rd Ed., Churchill Living- stone Elsevier, Canada, 2015.
  • 16. Y.C. Fung, Mechanical Properties of Living Tissues , 2nd Ed., Springer, New York, 1993.
  • 17. D. Karnopp, D. Margolis, R. Rosenberg, System Dynamics , 5th Ed., John Wiley & Sons, New Jersy, 2012.
  • 18. B. Alexander, V. Kotiuk, Proportions of hand segments, International Journal of Mor- phology , 28 (3): 755–758, 2010.
  • 19. H.E. Ash, A. Unsworth, Design of a surface replacement prosthesis for the proximal inter- phalangeal joint, Proceedings of the Institution of Mechanical Engineers, Part H : Journal of Engineering in Medicine , 214 (2): 151–163, 2000, doi: 10.1243/0954411001535327.
  • 20. C.E. Garrido Varas, T.J.U. Thompson, Metric dimensions of the proximal phalanges of the human hand and their relationship to side, position, and asymmetry, HOMO – Journal of Comparative Human Biology , 62 (2): 126–143, 2011, doi: 10.1016/j.jchb.2010.07.005.
  • 21. I.V. Grinyagin, E.V. Biryukova, M.A. Maier, Kinematic and dynamic synergies of hu- man precision-grip movements, Journal of Neurophysiology , 94 (4): 2284–2294, 2005, doi: 10.1152/jn.01310.2004.
  • 22. R. Arshad, Modelling inhomogeneities within the human intervertebral disc , Master Thesis, no. 04, Institute of Mechanics, Chair II, University of Stuttgart, 2004.
  • 23. J. Yang, R. Chiou, A. Ruprecht, J. Vicario, L.A. Macphail, T.E. Rams, A new device for measuring density of jaw bones, Dentomaxillofacial Radiology , 31 : 313–316, 2002, doi: 10.1038/sj.dmfr.4600715.
  • 24. J.H.C. Wang, Mechanobiology of tendon, Journal of Biomechanics , 39 (9): 1563–1582, 2006, doi: 10.1016/j.jbiomech.2005.05.011.
  • 25. E.L. Secco, A. Visioli, G. Magenes, Minimum jerk motion planning for a prosthetic finger, Journal of Robotic Systems , 21 (7): 361–368, 2004, doi: 10.1002/rob.20018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e135706-8add-402c-b535-919e84c306f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.