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Abstract: In the article, the pure bending problem for strip (beam) with straight, perpendicular to its axis crack located in the zone of tensile 
stresses is investigated on the assumption of narrow plastic strips near crack tips. Using methods of the theory of functions of a complex 
variable and complex potentials, the problem is reduced to the several linear conjunction problems. The solutions of latter problems are ob-
tained in the class of functions confined in the edges of plastic strips. Formulas for the calculation of their lengths are derived. Expressions 
for the determination of crack tip opening values are written. Numerical analysis of the problem is performed. 
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1. INTRODUCTION 

Beams are one of the main structural elements that are com-
mon in engineering, especially in construction practice. Cracks, 
which are strong stress concentrators, may appear in them during 
various operations and, as a result, may lead to destruction of 
such structural elements. Therefore, it is very important to careful-
ly evaluate the reliability of the beam operation in the presence of 
such defects. 

In an article, Monfared et al. (2018) investigated the configura-
tion of arbitrary crack configurations in the orthotropic strip. Fouri-
er transformation was used to construct a system of singular 
integral equations that was numerically solved using the Cheby-
shev quadrature formula for the density of dislocation on a crack 
face. Effects of crack geometry and parameter of nonhomogeneity 
of material on the stress intensity, energy release and energy 
density were considered. In the work of Pavazza (2000), approxi-
mate analytical formulas for stresses and displacements in thin 
rectangular orthotropic or isotropic strips subjected to tension are 
presented. 

Shi (2015) devoted his investigation to analytical and numeri-
cal analyses of the doubly periodic arrays of cracks and proposes 
a precise solution procedure for describing the interaction effect in 
the doubly periodic rectangular-shaped arrays of cracks. Fan et al. 
(2014) investigated the elastic-plastic fracture behaviour of an 
interaction between Zener–Stroh crack and coated inclusion in 
composite materials with regard to crack tip plastic zones. The 
sizes of plastic zone at the both crack tips were determined by the 
generalised Irwin model. In the article by Prawoto (2012), an 

approach of classical fracture mechanics is used for calculating 
the near crack tip plastic zones in heterogeneous or composite 
materials. In the research by Unger (2007), the Dugdale model of 
plasticity is used for a static crack instead of Tresca plasticity 
theory. 

An analysis of stress–strain state under combined bending 
and tension of an isotropic plate with crack is represented by 
Sulym et al. (2018) in the assumption of line and constant width 
area contact between crack faces but with no plastic zones near 
the crack tips. In the articles by Nykolyshyn et al. (2010, 2015), 
the tension of homogeneous isotropic plate weakened by two 
through cracks with plastic zones is considered. By using the 
method of complex potentials, the solution of the problem is re-
duced to linear conjugation problems and the explicit expressions 
for complex potentials of plane problem. The length of the plastic 
zone and crack opening displacement are obtained analytically 
and the numerical analysis of them is performed at various pa-
rameters. In the particular case, the known results are obtained. 

Kuz et al. (2015, 2019) investigated the influence of stress 
concentrators (square hole, cut or rigid inclusion) on the strength 
of a plate under uniaxial tension using the numerical solution of 
boundary-value problems of the theory of small elasto-plastic 
deformations for a linear hardening material. The growth of micro-
structurally short and physically small cracks in the fatigue pro-
cess zone and the initiation of macrocrack in notched tension 
specimens were investigated in the work of Ostash (2017). 

In this article, the problem of pure bending of strip (beam) with 
crack perpendicular to its axis and located in tensile stresses area 
is investigated. We assumed that at the crack tips, the narrow 
plastic strips are formed, as in the works of Panasyuk (1968) and 
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Savruk et al. (1989). Solving of the problem is based on the meth-
ods of the theory of functions of complex variable and complex 
potentials and is reduced to the problems of linear conjunction. 
Their solutions are obtained in class of functions confined at the 
tips of plastic strips. The method used in the article is given in the 
work of Muskhelishvili (1966). System of transcendental equations 
for calculating lengths of plastic zones is written. Expressions for 
calculating of crack tip opening values are also obtained. The 
numerical analysis of the problem is carried out. Graphic depend-
encies of the length of plastic strips and crack tip opening values 
are constructed at various values of problem parameters. 

2. FORMULATION OF THE PROBLEM 

Consider an elastic isotropic strip (beam) perpendicular to its 
axis straight through crack of length 2l, centre of which is at the 

distance x0 from the axis. Let 2h be the height of the beam trans-

verse section and 2а̃ be the width of the beam. Assume that the 

beam is under pure bending with the bending moment М. Let us 
introduce a Cartesian coordinate system Oy-axis, which is di-

rected along the beam centre line, and Ox-axis, which is directed 
along the crack. The crack is located in the tensile stress zone 
and its faces are free of external loads. Assume that near crack 

tips with coordinates  (а, 0) and (b, 0) narrow plastic zones 
(plastic srips) have been formed on the extending of the crack. In 
these zones, normal stresses are equal to the yield strength of 

beam material (Panasyuk, 1968; Savyn, 1968). Let the coordi-

nates of edges of the plastic strips are (d2, а) and (b, d1), L 
denotes the projection of the crack onto the Oх-axis and L1 and 

L2 denote plastic strips of length Δ2 = a − d2 and Δ1 = d1 −
b, respectively (Fig. 1). In addition, we introduce the notations 

L̃ = L + L1 + L2 and L̃1 = L1 + L2. 

 

Fig. 1. Beam loading scheme and location of crack with plastic  
          strips 

The following boundary conditions correspond to the formulat-
ed problem: 

𝜎х𝑦
± = 0, 𝑥 ∈ �̃�;                                 

𝜎𝑦𝑦
± = 0, 𝑥 ∈ 𝐿; 𝜎у𝑦

± = 𝜎𝑌 , 𝑥 ∈ �̃�1, 
(1) 

where σyy and σxy are the components of stress tensor and 

marks ‘+’ and ‘−’ mean limits as y → ±0. 

3. CONSTRUCTION OF THE SOLUTION OF THE PROBLEM 

Let us introduce the complex potentials Φ(𝑧) and Ω(𝑧) 
(Muskhelishvili, 1966) and use the expressions  

𝜎𝑦𝑦 − 𝑖𝜎𝑥𝑦 = Φ(𝑧) + Ω(𝑧̅) + (𝑧 − 𝑧̅)Φ′(𝑧),                      (2) 

2𝜇(𝑢 + 𝑖𝑣)′ = 𝜅Φ(𝑧) − Ω(𝑧̅) − (𝑧 − 𝑧̅)Φ′(𝑧),                  (3) 

where 𝜇 is the shearing modulus; к is the Muskhelishvili’s con-

stant; 𝑢′ = ∂𝑢 ∂х⁄ , 𝑣′ = ∂𝜈 ∂х⁄ ; 𝑢 and 𝑣 are the components 
of displacement vector of a beam point on axes 𝑂𝑥 and 𝑂у; 

𝑧 = 𝑥 + 𝑖𝑦, 𝑖2 = −1. 
According to Panasyuk and Lozovyy (1961) and Savyn 

(1968), functions Φ(𝑧) and Ω(𝑧) at large |𝑧| can be presented 
as 

Φ(z) = Сz 4⁄ + O(1/z2) 

Ω(z) = 3Сz 4⁄ + O(1/z2) 

С = M I⁄  

(4) 

where І = 4а̃ℎ3 3⁄  is an inertia moment of the beam about neu-
tral line of its transverse section. 

From the boundary condition,  

(σyy − iσxy)
+

− (σyy − iσxy)
−

= 0, x ∈ L̃ 

taking into account (2), we obtain 

[Φ(𝑥) − Ω(𝑥)]+ − [Φ(𝑥) − Ω(𝑥)]− = 0, 𝑥 ∈ �̃�.                (5) 

The solution of the linear conjunction problem (5), (4) is 

Φ(𝑧) − Ω(𝑧) = −
С

2
𝑧.                                                              (6) 

On the basis of (1), we can write the following boundary condi-
tion: 

(𝜎𝑦𝑦 − 𝑖𝜎𝑥𝑦)
+

+ (𝜎𝑦𝑦 − 𝑖𝜎𝑥𝑦)
−

= {
2𝜎𝑌, 𝑥 ∈ �̃�1;
0, 𝑥 ∈ 𝐿.

               (7) 

Taking into account (2), from (7), we obtain 

[Φ(𝑥) + Ω(𝑥)]+ + [Φ(𝑥) + Ω(𝑥)]− = {
2𝜎𝑌, 𝑥 ∈ �̃�1,
0, 𝑥 ∈ 𝐿.

        (8) 

The solution of this linear conjunction problem is 

Φ(𝑧) + Ω(𝑧) =
𝜎𝑌𝑋(𝑧)

𝜋𝑖
∫

𝑑𝑡

𝑋+(𝑡)(𝑡−𝑧)�̃�1
+ с1𝑋(𝑧)𝐿,                 (9) 

where 

𝑋(𝑧) = √(𝑧 − 𝑑1)(𝑧 − 𝑑2), 𝑋+(𝑡) = і√(𝑑1 − 𝑡)(𝑡 − 𝑑2), 

с1 is an unknown constant. 

On the basis of (4) at large |𝑧|, we can write 

Φ(𝑧) + Ω(𝑧) = 𝐶𝑧 + 𝑂(1 𝑧2⁄ ).                                           (10) 

As at large |𝑧| 

𝑋(𝑧) = 𝑧 −
1

2
(𝑑1 + 𝑑2) −

1

8
(𝑑1 − 𝑑2)2

1

𝑧
+. . ., 

𝑋(𝑧)

𝑡 − 𝑧
= −1 +

1

𝑧
(

1

2
(𝑑1 + 𝑑2) − 𝑡) +. . ., 
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expanding right and left parts of formulas (9) into series at large 
|𝑧| and making equal the coefficients at equal powers of 𝑧, we 
receive 

с1 = С 

−
𝜎𝑌

𝜋𝑖
∫

𝑑𝑡

𝑋+(𝑡)
�̃�1

− С
1

2
(𝑑1 + 𝑑2) = 0 

𝜎𝑌

𝜋𝑖
∫

1

𝑋+(𝑡)
�̃�1

(
1

2
(𝑑1 + 𝑑2) − 𝑡) 𝑑𝑡 

−
𝐶

8
(𝑑1 − 𝑑2)2 = 0 

(11) 

Using calculated integrals from Bronshteyn and Semendyaev 
(1967) formula (11) leads us to the system of transcendental 

equations for finding lengths Δі(і = 1,2) of plastic strips at the 
crack tips: 

2

𝜋
[arccos((2 + 𝑤1 − 𝑤2) 𝛾1⁄ ) 

arccos((2 + 𝑤2 − 𝑤1) 𝛾1⁄ )]  = �̃�(2�̃� + 𝑤1 − 𝑤2) 

�̃�𝛾1
2 =

16

𝜋

𝑤1 − 𝑤2

√𝑤2(2 + 𝑤1) + √𝑤1(2 + 𝑤2)
 

(12) 

where  

𝑤𝑖 = Δ𝑖 𝑙⁄ , �̃� = 𝑥0 𝑙⁄ , �̃� = 𝑀𝑙 (𝐼𝜎𝑌)⁄ , 𝛾1 = 2 + 𝑤1 + 𝑤1. 

Now, on the basis of (6) and (9), we have  

Φ(𝑧) =
С

2
(𝑋(𝑧) −

1

2
𝑧) +

𝜎𝑌𝑋(𝑧)

2𝜋𝑖
∫

𝑑𝑡

𝑋+(𝑡)(𝑡−𝑧)�̃�1
,                  (13) 

Ω(𝑧) = Φ(𝑧) +
С

2
𝑧.                                                               (14) 

Taking into account (3), we can write the expression for the 
derivative of the opening of the crack faces  

2𝜇[(𝑢 + 𝑖𝑣)′+
− (𝑢 + 𝑖𝑣)′−

] = 

к[Φ+(𝑥) − Φ−(𝑥)] + Ω+(𝑥) − Ω−(𝑥), 𝑥 ∈ �̃�1.          (15) 

From here, using (14),  

2𝜇𝛿′х(х) = 2𝜇[𝑣′+
− 𝑣′−

] = 

(к + 1)Im[Φ+(𝑥) − Φ−(𝑥)], 𝑥 ∈ �̃�1.                             (16) 

Taking into account (13) and calculating integrals (Bronshteyn, 
Semendyaev, 1967, Savruk et al.  1989), we obtain  

𝛿1 =
𝛾1

2
[

𝛾1�̃�

4
(𝑎1√1 − 𝑎1

2 − arccos𝑎1) −

−
1

𝜋
(𝛾3 + 𝛾2arccos𝑎1)]

,                          (17) 

𝛿2 =
𝛾1

2
[

𝛾1�̃�

4
(𝑎2√1 − 𝑎2

2 + arccos�̃�2) +
1

𝜋
(𝛾3 +

𝛾2arccos�̃�2)], 

where 

а1 = (2 + 𝑤2 − 𝑤1) 𝛾1⁄ , а2 = (2 + 𝑤1 − 𝑤2) 𝛾1⁄ , а̃2 =

−а2, 𝛾2 = √1 − а1
2 − √1 − а2

2, 

𝛾3 =
1

2
(𝑎1 − 𝑎2)ln

1−𝑎1𝑎1−√(1−а1
2)(1−а2

2)

1−𝑎1𝑎1+√(1−а1
2)(1−а2

2)

, 

𝛿𝑖 =
2𝜇𝛿𝑖

𝜎𝑌(1+к)𝑙
, 𝛿2 = 𝛿а, 𝛿1 = 𝛿𝑏.                                           (18) 

Account for (2), (7) and (8), we calculate stress tensor com-
ponents on the faces of crack and on its extending using the 
formulas  

𝜎уу
∗ = 𝜎𝑦𝑦 𝜎𝑌⁄ =

−�̃�𝑋(𝑥1) +
1

𝜋
(arccos�̃�1 + arccos�̃�2); 𝜎𝑥𝑥

∗ = 𝜎𝑥𝑥 𝜎𝑌⁄ =

−�̃�𝑥1 + 𝜎𝑦𝑦
∗ , 𝑥1 < �̃� − 1 − 𝑤2, 

𝜎𝑦𝑦
∗ = 1, 𝜎𝑥𝑥

∗ = 𝜎𝑥𝑥
∗± = −�̃�𝑥1 + 1,  

�̃� − 1 − 𝑤2 < 𝑥1 < �̃� − 1, 1 + �̃� < 𝑥1 < 1 + �̃� + 𝑤1;    (19) 

𝜎𝑦𝑦
∗ = 0, 𝜎𝑥𝑥

∗ = 𝜎𝑥𝑥
∗± = −�̃�𝑥1, �̃� − 1 < 𝑥1 < �̃� + 1; 

𝜎уу
∗ = 𝜎𝑦𝑦 𝜎𝑌⁄ = �̃�𝑋(𝑥1) +

1

𝜋
(arccos�̃�1 + arccos�̃�2), 

𝜎𝑥𝑥
∗ = 𝜎𝑥𝑥 𝜎𝑌⁄ = −�̃�𝑥1 + 𝜎𝑦𝑦

∗ , 𝑥1 > 1 + �̃� + 𝑤1, 

where 

�̃�1 = 1 −
2𝑤1(𝑥1 − �̃�2)

(𝑥1 − �̃�1 + 𝑤1)(�̃�1 − �̃�2)
, 

�̃�2 = 1 −
2𝑤2(�̃�1 − 𝑥1)

(�̃�2 + 𝑤2 − 𝑥1)(�̃�1 − �̃�2)
, 

𝑋(𝑥1) = √(𝑥1 − �̃�1)(𝑥1 − �̃�2),                                          (20) 

�̃�1 = 𝑑1 𝑙⁄ = 1 + �̃� + 𝑤1, �̃�2 = 𝑑2 𝑙⁄ = �̃� − 1 − 𝑤2, 
𝑥1 = 𝑥 𝑙⁄ . 

Note that based on (12), we can find out the condition under 

which 𝑤2 = 0, that is, the length of the plastic strip at the nearest 
to the beam axe crack tip is zero. For example, given the external 

load �̃�, we obtain the following expression from the second equa-
tion (12): 

�̃�(2 + 𝑤1)2 =
8√2

𝜋 √𝑤1,                                                         (21) 

for calculating the length of the plastic strip at another crack 
tip. And from the first equation (12) at given �̃� and obtained 𝑤1, 

we determine the coordinate of crack centre х̃1 = х0 𝑙⁄   

х̃1 =
1

2
[

2

𝜋�̃�
arccos

2−𝑤1

2+𝑤1
− 𝑤1].                                              (22) 

Note also that equation (21) in 𝑤1 has a solution up to some 

certain value �̃�0 only. At �̃� > �̃�0, it does not have the solution 
and satisfying the condition 𝑤2 = 0 is impossible. 

4. NUMERICAL ANALYSIS OF THE PROBLEM 

The results of the calculations are given in Figures 2–7. 
Graphical dependencies of dimensionless length of plastic 

strip and dimensionless opening the displacement of crack faces 
at crack tips on external load are given in Figures 2 and 3, corre-
spondingly. In these figures, curves with label ‘1’ correspond to 
the farther to the beam axis crack tip and curves with label ‘2’ 
correspond to the nearer one. Figures 2(a) and 3(а) are con-
structed at х̃ = х0 l⁄ = 1.5, and Figures 2(b) and 3(b) are con-

structed at х̃ = 3. It is seen from Figures 2 and 3 that, under fixed 
external load, the length of plastic strip and crack tip opening 
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values increases when crack centre moves from beam axis. On 

the basis of δк model, the beam destruction starts from the farther 
(with respect to beam axis) crack tip. 

 
Fig. 2. Graphical dependencies of relative length of plastic strip  
            at crack tips on external load 

 
Fig. 3. Graphical dependencies of dimensionless crack tip opening  
            displacement on external load 

 
Fig. 4. Graphical dependencies of length of plastic strip at the crack tip  
           (Fig. 4 а) and coordinate of crack centre, at which the length  
           of plastic strip at nearer crack tip is zero, on external load 

 
Fig. 5. Graphical dependencies of length of plastic strip at the crack tips  
           on relative coordinate of crack centre х̃ = x0 l⁄  at various values  

           of external load 
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Figure 4 deals with case when the length of plastic strip at 
nearer to the beam axis crack tip is zero. The graphical depend-
encies of length of plastic strip at farther crack tip are given in Fig. 
4(f). Figure 4(b) shows the graphical dependencies of coordinate 
of crack center for this case on external load attached to the 
beam. It is can be seen that increasing the value of external load 
leads to increasing the length of plastic strip at farther crack tip. At 
the same time, crack centre gets closer to the beam axis and the 
crack tip with zero plastic strip is strip of compressive stresses for 
the beam without crack. 

Figure 5 demonstrates graphical dependencies of length of 
plastic strip in farther (Fig. 5а) and nearer (Fig. 5b) to the beam 

axis crack tips on relative coordinate of crack centre х̃ at several 
values of external load. Curves labelled as ‘1’, ‘2’ and ‘3’, respec-
tively, correspond to σ̃ = 0.1075, σ̃ = 0.205 and σ̃ = 0.3025. 
Note that curves are constructed at х̃ > х̃1 and labels ‘1’, ‘2’ and 

‘3’ stand for х̃1 = 0.499, х̃1 = 0.495, and х̃1 = 0.489, corre-
spondingly. It is seen that decreasing the distance between crack 
centre and beam axis increases the length of the plastic strips at 
crack tip. 

 

Fig. 6. Stress distribution on crack line at х̃ = х̃1 and various    

  values of external load �̃� 

In Figures 6 and 7, curves with label ‘1’ are constructed at ex-

ternal load σ̃ = 0.01, with label ‘2’ at σ̃ = 0.1, ‘3’ at σ̃ = 0.15 

and ‘4’ at σ̃ = 0.2. Figures 6(а) and 7(а) show graphical depend-
encies of stresses σxx

∗ = σxx σY⁄  , and Figure 6(b) and 7(b) 

show graphical dependencies of stresses  σуу
∗ = σyy σY⁄ . From 

Figures 6(а) and 7(а), we see that stresses σхх
∗  are always posi-

tive beyond the crack, but on the crack, they can be both positive 
and negative, everything depends on the position of crack center. 

σхх
∗  decreases away from the crack tips. From Figures 6(b) and 

7(b), we see that stresses σуу
∗  beyond the crack tip b are constant 

in plastic strip at first, then decrease to some value and after that 
increase and become greater than 1 at a certain distance, that is 
σyy > σY (beam material goes into a plastic state). But beyond 

the crack tip а, they behave differently. As we can see from Figure 

6(b), stresses  σyy are negative when the length of plastic strip at 

this tip is zero. But for nonzero length, at first, they are equal to  

σY in plastic strip and then decrease from positive values to nega-
tive ones. 

 

Fig. 7. Stress distribution on crack line at х̃ = 2 and various  
     values of external load �̃� 

5. CONCLUSIONS 

Numerical analysis of the problem confirms that the destruc-
tion of the strip (beam) with a crack perpendicular to its axis on 

the grounds of δK − fracture model for bodies with crack will start 
from the crack tip that is farther to the beam axis. A quantitative 
estimation of length of plastic zone and value of the opening of 
crack faces are also obtained. Note that the plastic strip is not 
always formed at the nearer (to the beam axis) crack tip, which is 
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in the strip of compressive stresses for the beam without crack. 
But, in this case, there is no contact between crack faces, and the 
length of the plastic strip at this tip decreases when the tip re-
moves from the beam axis. At some distance, this length be-
comes zero. As the distance increases, quantitative changes turn 
into qualitative ones, and perhaps, crack faces begin to contact. 
This requires a further investigation. 
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