Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Skuteczność mechaniczna i antykorozyjna powłok organicznych z pigmentami modyfikowanymi fosforanem polianiliny i fosforanem polipirolu
Języki publikacji
Abstrakty
This paper describes the results of a study of the anticorrosion efficiency of composite materials prepared by precipitating conductive polymer salts on the surface of synthesized pigment particles. Specifically, composite pigments with polyaniline phosphate and polypyrrole phosphate were prepared. The novelty consists in testing the anticorrosive properties of composite pigments based on tungsten and molybdate, which have been surface treated with salt conductive polymers. Strontium, zinc and ferric molybdates and tungstates were synthesized and described and then coated with the conductive polymer salts. Twelve composite material samples were prepared and described and paints containing them as pigments were formulated. A solvent-type epoxy-ester resin served as the binder. The volume concentrations of the composite materials in the paint were 1%, 5%, 10% and 15%. The paints were applied to steel panels and the anticorrosion efficiency of the composite pigments was measured in dependence on the conductive polymer salt type and pigment volume concentration. Paint samples containing a commercial zinc phosphate pigment were prepared as reference materials. The physico-mechanical properties of the paints were also measured: the paint films exhibited an outstanding mechanical resistance. The steel panels coated with the paints were subjected to accelerated cyclic corrosion tests, the results point to a very good anticorrosion efficiency of the organic coatings containing the composite particles examined.
W pracy omówiono wyniki badań skuteczności antykorozyjnej materiałów kompozytowych wytworzonych przez wytrącanie soli polimerów przewodzących na powierzchni zsyntetyzowanych cząstek pigmentu. Sporządzono pigmenty kompozytowe z fosforanem polianiliny i fosforanem polipirolu. Nowość polega na przebadaniu antykorozyjnych właściwości pigmentów kompozytowych na bazie wolframu i molibdenianu, które zostały poddane obróbce powierzchniowej solami polimerów przewodzących. Zsyntetyzowano molibdeniany i wolframiany strontu, cynku i żelaza, scharakteryzowano je, a następnie pokryto solami polimerów przewodzących. Sporządzono i scharakteryzowano dwanaście próbek materiałów kompozytowych i opracowano receptury farb zawierających je jako pigmenty. Jako spoiwo zastosowano rozpuszczalnikową żywicę epoksyestrową. Stężenia objętościowe materiałów kompozytowych w farbie wynosiły 1%, 5%, 10% i 15%. Farby nałożono na płytki stalowe i badano skuteczność antykorozyjną pigmentów kompozytowych w zależności od rodzaju soli polimeru przewodzącego i stężenia objętościowego pigmentu. Jako próbki odniesienia sporządzono farby zawierające handlowy fosforan cynku. Stalowe płytki pokryte farbami poddano przyspieszonym cyklicznym badaniom korozyjnym – wyniki wskazują na bardzo dobrą skuteczność antykorozyjną powłok organicznych zawierających badane pigmenty kompozytowe. Przebadano również właściwości fizyko-mechaniczne powłok i stwierdzono, że powłoki wykazywały wyjątkową odporność mechaniczną.
Wydawca
Czasopismo
Rocznik
Tom
Strony
278--289
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
autor
- Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
Bibliografia
- [1] S.A. Umoren, M.M. Solomon. 2019. “Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites”. Progress in Materials Science 104 : 380-450.
- [2] N. M. Ahmed, M. G. Mohamed, M. R. Mabrouk, A. A. ELShami. 2015. “Novel anticorrosive pigments based on waste material for corrosion protection of reinforced concrete steel”. Construction and Building Materials 98 : 388-396.
- [3] H. Vakili, B. Ramezanzadeh, R. Amini. 2015. “The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings”. Corrosion Science 94 : 466- 475.
- [4] R. S. Patil, S. Radhakrishan. 2006. “Conducting polymer based hybrid nanocompostes for enhanced corrosion protective coating”. Progress in Organic Coatings 57 : 332.
- [5] N. Granizo, J. M. Vega, D. Fuente, B. Chico, M. Morcillo. 2013. “Ion – exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Anion – exchange pigments”. Progress in Organic Coatings 76 : 411.
- [6] W. D. Robertson. 1951. “Molybdate and tungstate as corrosion inhibitors and the mechanism of inhibition”. Journal of the Electrochemical Society 98 (3) : 94.
- [7] M. C. Deya, G. Blustein, R. Romagnoli, B. del Amo. 2002. “The influence of the anion type on the anticorrosive behaviour of inorganic phosphates”. Surface and Coatings Technology 150 : 133-142.
- [8] Y. Wei, J. Wang, X. Jia, J. Weh. 1995. “Polyaniline as corrosion protection coatings on cold rolled steel”. Polymer 36 : 4535-4537.
- [9] W. S. Araujo, I. C. P. Margarit, M. Ferreira, O. R. Mattos, P. Lima Neto. 2001. “Undoped polyaniline anticorrosive properties”. Electrochemical Acta 46 : 1307.
- [10] C. H van Vliet. 1998. “Reduction of zinc and volatile organic solvents in two- -pack anti- corrosive primers, a pilot study”. Progress in Organic Coatings 34 : 220-226.
- [11] A.V. Zmozinski, R.S. Peres, K. Freiberger, C.A. Ferreira, S.M.M. Tamborim, D.S. Azambuja. 2018. “Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations”. Progress in Organic Coatings 121 : 23-29.
- [12] E. Armelin, C. Aleman, J. I. Iribarren. 2009. “Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms”. Progress in Organic Coatings 65 : 88-93.
- [13] E. Armelin, R. Pla, F. Liesa, X. Ramis, J. I. Iribarren, C. Aleman. 2008. “Corrososion protection with polyaniline and pyrrole as anticorrosive additives for epoxy paint”. Corrosion Science 50 : 721 – 728.
- [14] A. Leon, R.C. Advincula. 2015. Chapter 11 “Conducting Polymers with Superhydrophobic Effects as Anticorrosion Coating” Intelligent Coatings for Corrosion Control : 409-430.
- [15] N. S. Sangaj, V. C. Malshe. 2004. “Permeability of polymers in protective organic coatings“. Progress in Organic Coatings 50 : 28-39.
- [16] B. Wessling, J. Posdorfer. 1999. “Corrosion prevention with an organic metal (polyaniline): corrosion test results”. Electrochimica Acta 44 : 2139-2147.
- [17] J.Hou, G. Zhu, J. Xu, H. Liu. 2013. “Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawater”. Journal of Materials Science & Technology 29 (7) : 678-684.
- [18] S. P.Sitaram, J. O Stoffer, T. J. o´Keefe. 1997. “Application of Conducting Polymers in Corrosion Protection”. Journal of Coatings Technology 69 : 65-69.
- [19] J. Prokeš, J. Stejskal, M. Omastova. 2001. “Polyanilin a polypyrrol – two representatives of conductive polymers”. Chemicke listy 95 : 484.
- [20] D. E.Tallman, Y. Pae, G. P. Bierwagen. 1999. “Conducting Polymers and Corrosion: Polyaniline on Steel”. Corrosion 55 : 779-786.
- [21] N. Ahmed, A. G. MacDiarmid. 1996. “Inhibition of corrosion of steel with the exploitation of conducting polymers”. Synthetic Metals 78 : 103-110.
- [22] J. Fang, K. Xu, L. Zhu, Z. Zhoiu, H. Tang. 2007. “A study on mechanism of corrosion protection of polyaniline coating and its failure”. Corrosion Science 49 : 4232-4242.
- [23] M. Omastova, J. Stejskal, J. Prokeš. 2001. „Vodive polymery – materialy budoucnosti”. Plasty a kaučuk 38 : 136.
- [24] B. N. Grgur, A. R. Elkais, M. M. Gvozdenović, S. Ž. Drmanić, T. Lj. Trišović, B. Z. Jugović. 2015. “Corrosion of mild steel with composite polyaniline coatings using different formulations”. Progress in Organic Coatings 79 : 17-24.
- [25] P. P. Deshpande, N. G. Jadhav, V. J. Gelling, D. Sazou. 2014. “Conducting polymer for corrosion protection”. Journal of Caotings Technology and Research 11 : 473.
- [26] A. Kalendova, T. Hajkova. 2015. “Synthesis and investigation of the properties of tungstate based anticorrosion pigments in coatings”. Anti-Corrosion Methods and Materials 62 : 307-321.
- [27] J. W. J. Silva, E. N. Codaro, R. Z. Nakazato, L. R. O. Hein. 2005. „Influence of chromate, molybdate and tungstate on pit formation in chloride medium”. Applied Surface Science 252 : 1117.
- [28] J. Błasiak, J. Kowali. 2000. “A comparison of the vitro genotoxicity of tri – and hexavalent chromium”. Mutation Research 469 : 135-145.
- [29] A. Mostafaei, F. Nasirpouri. 2014. “Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints”. Progress in Organic Coatings 77 : 146-159.
- [30] A. H. Navarchian, M. Joulazadeh, F. Karimi. 2014. “Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/ clay nanocomposites on steel surfaces”. Progress in Organic Coatings 77 : 347-353.
- [31] T. Hajkova, A. Kalendova. 2017. “The anticorrosion properties of pigments based on molybdates and tungstates surface-modified with conducting polymers”. Koroze a ochrana materialu 61(1) : 7–18
- [32] G. Mu, X. Li, Q. Qu, J. Zhou. 2006. „Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution”. Corrosion Science 48 : 445.
- [33] J. Brodinova, J. Stejskal, A. Kalendova. 2007. „Investigation of ferrites properties with polyaniline layer in anticorrosive coatings”. Journal of Physics and Chemistry of Solids 68 : 1091-1095.
- [34] A. Kalendova, I. Sapurina, J. Stejskal, D. Vesely. 2008. “Anticorrosion properties of polyaniline-coated pigments in organic coatings”. Corrosion Science 50 : 3549-3560.
- [35] M. Kohl, A. Kalendova. 2015. “Effect of polyaniline salts on the mechanical and corrosion properties of organic protective coatings”. Progress in Organic Coatings 86 : 96–107.
- [36] M. Kohl, A. Kalendova, E. Schmidova. 2017. “Enhancing corrosion resistance of zinc-filled protective coatings by using conductive polymers”. Chemical Papers 71 (2) : 409-421.
- [37] Goldschmidt, A., & Streitberger, H. J. 2007. BASF Handbook on Basics of Coating Technology. Vincentz Network, Germany. ISBN 973-3-86630-903-6 : 345-401.
- [38] A. Kalendova, D. Vesely, P. Kalenda. 2010. “Properties of paints with hematite coated muscovite and talc particles”. Applied Clay Science 48 : 581-588.
- [39] A. Kalendova, D. Vesely. 2009. “Study of the anticorrosive efficiency of zincite and periclase-based core–shell pigments in organic coatings”. Progress in Organic Coatings 64 : 5-19.
- [40] H. Wang, R. Guo, Y. Shen, Y. Shao, G. Fei, K. Zhu. 2019. “Waterborne polyaniline- graft-alkyd for anticorrosion coating and comparison study with physical blend”. Progress in Organic Coatings 126 : 187-195
- [41] A. Goldschmidt, H. J. Streitberger. 2007. BASF Handbook on Basics of Coating Technology, Vincentz Network: Germany, 2007, ISBN 973-3-86630-903-6 : 345-401.
- [42] A. Kalendova, D. Vesely, M. Kohl, J. Stejskal. 2014. “Effect of surface treatment of pigment particles with polypyrrole and polyaniline phosphate on their corrosion inhibiting properties in organic coatings”. Progress in Organic Coatings 77 : 1465–1483.
- [43] D. Vesely, A. Kalendova, P. Kalenda. 2010. A study of diatomite and calcined kaoline properties in anticorrosion protective coatings, Progress in Organic Coatings 68 (2010) 173-179.
- [44] A. Kalendova, D. Vesely, M. Kohl, J. Stejskal. 2015. “Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments”. Progress in Organic Coatings 78 : 1-20.
- [45] M. Kohl, A. Kalendova. 2014. “Assessment of the impact of polyaniline salts on corrosion properties of organic coatings”. Koroze a ochrana materialu 58: 113-119.
- [46] T. K Rout, G Jha, A. K Singh, N. Bandyopadhyay, O. N Mohantzy. 2003. “Development of conducting polyaniline coating: a novel approach to superior corrosion resistance”. Surface and Coatings Technology 167 : 16-24.
- [47] B. Wessling. 1997. “Scientific and Commercial Breakthrough for Organic Metals”. Synthetic Metals 85 : 1313-1318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e0fe255-f05d-4073-91ff-ece4acf2b071