PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Innovative Interaction between Organo-Kaolinite and Methyl Orange for Industrial Wastes Removal – A Kinetic Investigation and Modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since organic dyes are the main component of many industrial wastes, it is necessary to be removed efficiently and instantaneously. The aim of this research focuses on the synthesizing of organoclay by modifying kaolinite with cetyl trimethyl ammonium bromide and applying it for the removal of (methyl-orange) dye from water by the mechanisms of adsorption. The effects of several parameters, mainly agitation time, water pH, adsorbent doses, and dye concentrations, on the adsorption process were optimised using the central composite design (CCD) method, which was performed using MINITAB package (version 17). Results showed that the dye was completely (100%) removed at pH of 4.0, adsorbent dose of 0.4 g, dye concentration of 50 mg/L, and agitation speed of 160 rpm. In addition, it was found that Freundlich and Sips isotherms were the best models to track lab data. Moreover, the Pseudo second order method was found to be more convenient compared to other models for studying kinetics of the sorption mechanism. For column testing, an appropriate hydraulic conductivity and reactivity were obtained by combining modificatory kaolinite and glass waste with weight proportions of 50:50. Thus, empirical simulations such as those in the kinetic model of Clark have provided satisfactory consent for using the simulated methyl orange.
Twórcy
  • Department of Environmental Engineering, Faculty of Engineering, University of Babylon, Babylon, Iraq
  • Department of Civil Engineering, Faculty of Engineering, University of Babylon, Iraq
  • Collage of Engineering, AL-Qasim Green University, Babylon, Iraq; Faculty of Engineering, University of Kufa, Al-Najaf, Iraq
  • Collage of Engineering, AL-Qasim Green University, Babylon, Iraq
Bibliografia
  • 1. Liu Y., Zhu, L. 2017. Enhanced treatment of dispersed dye-production wastewater by self-assembled organobentonite in a one-step process with
  • 2. Czaja T., Wójcik K., Grzeszczuk M., Szosta, R. 2019. Polypyrrole–Methyl Orange Raman pH Sensor. Polymers, 11, 715. https://doi.org/10.3390/polym1104071
  • 3. Guo X., Wu Z., Wang Z., Lin F., Li P., Liu J. 2023. Preparation of Chitosan-Modified Bentonite and Its Adsorption Performance on Tetracycline. ACS Omega, 8(22),19455–19463. doi: 10.1021/acsomega.3c00745
  • 4. Faisal A.A.H., Al-Wakel S.F.A., Assi H.A., Naji L.A., Naushad M. 2020. Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. J. Water Process Eng, 33, 101112.
  • 5. Sejie P., Nadiye-Tabbiruka S. 2016. Removal of Methyl Orange (MO) from Water by adsorption onto Modified Local Clay (Kaolinite). Phys. Chem.
  • 6. Demeusy B., Arias-Quintero C.A., Butin G., Lainé J., Tripathy S.K., Marin J., Dehaine Q., Filippov L.O. 2023. Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery. Minerals, 13, 950. doi: 10.3390/min13070950
  • 7. Ahmed S.N., Ali S.J., Al-Zubaidi H.A.M., Ali A.H., Mohammed A. 2020 . Improvement of organic matter removal in water produced of oilfields using low cost Moringa peels as a new green environmental adsorbent. Global Nest, 22, 268–274.
  • 8. Faisal A.A.H., Naji L.A.2019. Simulation of Ammonia Nitrogen Removal from Simulated Waste-water by Sorption onto Waste Foundry Sand Using Artificial Neural Network. Assoc. Arab Univ. J. Eng. Sci, 26, 28–34.
  • 9. Jeeva M., Zuhairi W.Y.W. 2018. Adsorption of acid orange 33 dye by bentonite and surfactant modified bentonite. Asian J. Chem.
  • 10. Naji L.A., Jassam S.H., Yaseen M.J., Faisal, A.A.H., Al-Ansari, N. 2020. Modification of Langmuir model for simulating initial pH and temperature effects on sorption process. Sep. Sci. Technol, 55, 2729–2736.
  • 11. Abd Ali Z.T., Naji L.A., Almuktar S.A.A.A.N., Faisal,A.A.H., Abed, S.N., Scholz, M., Naushad, M., Ahamad, T. 2020. Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J. Water Process Eng, 33, 101033.
  • 12. Alshammari M., Al Juboury M.F., Naji L.A., Faisal, A.A.H., Zhu, H., Al-Ansari, N., Naushad, M. 2020. Synthesis of a Novel Composite Sorbent Coated with Siderite Nanoparticles and its Application for Remediation of Water Contaminated with Congo Red Dye. Int. J. Environ. Res, 14.
  • 13. Al-Zubaidi H.A. 2012. Effect of heavy metals in waste-water effluents of textile factory-Hilla on the characteristics of Hilla River. J. Kerbala Univ, 10, 5–16.
  • 14. Naji L.A., Faisal A.A.H., Rashid H.M., Naushad M., Ahama, T. 2020. Environmental remediation of synthetic leachate produced from sanitary landfills using low-cost composite sorbent. Environ. Technol. Innov, 175, 100680.
  • 15. Anirudhan T.S., Ramachandran M. 2015. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot, 95, 215–225.
  • 16. Faisal A.A.H., Nassir Z.S., Naji L.A., Naushad M., Ahamad T. 2020. A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network. Sustain. Chem. Pharm.
  • 17. Kıranşan M., Soltani R.D.C., Hassani A., Karaca S., Khataee A. 2014. Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J. Taiwan Inst. Chem. Eng, 45, 2565–2577.
  • 18. Fosso-Kankeu E., Waanders F., Fourie C.L. 2016. Adsorption of Congo Red by surfactant-impregnated bentonite clay. Desalin. Water Treat, 57, 27663–27671.
  • 19. Al-Zubaidi H.A.M., Wells S.A. 2020. Analytical and field verification of a 3D hydrodynamic and water quality numerical scheme based on the 2D formulation in CE-QUAL-W2. Journal of Hydraulic Research, 58(1), 152–171. doi: 10.1080/00221686.2018.1499051
  • 20. Faisal A.A.H., Ali I.M., Naji L.A., Madhloom, H.M., Al-Ansari, N. 2020. Using different materials as permeable reactive barrier for remediation of groundwater contaminated with landfill’s leachate. Desalin. WATER Treat, 175, 152–163.
  • 21. Ahmed D.N., Faisal A.A.H., Jassam S.H., Naji L.A., Naushad, M. 2020. Kinetic Model for pH Variation Resulted from Interaction of Aqueous Solution Contaminated with Nickel Ions and Cement Kiln Dust. J. Chem, 2020, 1–11.
  • 22. Faisal A.A.H., Jasim H.K., Naji L.A., Naushad M., Ahamad T. 2020. Cement kiln dust-sand permeable reactive barrier for remediation of groundwater contaminated with dissolved benzene. Sep. Sci. Technol, 1–14.
  • 23. Al Juboury M.F., Alshammari M.H., Al-Juhaisi M.R., Naji L.A., Faisal A.A.H., Naushad M., Lima E.C. 2020. Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye. Water Sci. Technol.
  • 24. Miz M. El, Akichouh H., Salhi S., Bachiri A. El, Tahani A. 2014. Adsorption-desorption and kinetics studies of Methylene Blue Dye on Na-bentonite from Aqueous Solution. IOSR J. Appl. Chem, 7, 60–78.
  • 25. Saad N., Abd Ali Z.T., Naji L.A., Faisal A.A.A.H., Al-Ansari N. 2019. Development of Bi-Langmuir model on the sorption of cadmium onto waste foundry sand: Effects of initial pH and temperature. poly-aluminium chloride. Scientific Reports, 7. Environ. Eng. Res, 25, 677–684.
  • 26. Ahmed M.J., Dhedan S.K. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib, 317, 9–14.
  • 27. Alquzweeni S.S., Al-Zubaidi H.A.M., Samaka I.S., Albahadily, A.R. 2021. Development of a grau model for simulating cephalexin residue removal from waste-water by using lemna minor.Cogent Engineering, 8(1), 1963180. doi: 10.1080/23311916.2021.1963180
  • 28. Naji L.A., Faisal A.A.H., Rashid H.M., Naushad M., Ahamad T. 2020. Environmental remediation of synthetic leachate produced from sanitary landfills using low-cost composite sorbent. Environ. Technol. Innov, 18, 100680.
  • 29. Yan G., Viraraghavan T., Chen, M .2001. A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol, 19, 25–43.
  • 30. Chatterjee A., Schiewer, S. 2014. Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns. Chem. Eng. J. 244, 105–116.
  • 31. Tsvetanova L., Barbov B., Rusew R., Delcheva Z., Shivachev B. 2022. Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. Water, 14, 2152. doi: 10.3390/w14142152
  • 32. Al-Zubaidi H.A.M., Naje A.S., Al-Ridah Z.A., Chabuck A., Ali, I.M. 2021. A Statistical Technique for Modelling Dissolved Oxygen in Salt Lakes. Cogent Engineering, 8(1), 1875533. doi: 10.1080/23311916.2021.1875533
  • 33. Al-Jassani F.D., Al-Zubaidi H.A.M., Al-Mansori N.J. 2022. Satellite-Based Statistical Analysis of Hilla River Water Quality Parameters, Iraq. Nature Environment and Pollution Technology, 21(5), 2315–2321. doi: 10.46488/NEPT.2022.v21i05.027
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e0f2118-01e5-4102-ac9f-ce000ea04ae0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.