PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Advantages and Shortcomings of Using Nano-sized Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energetic materials are substances that can store chemical energy in their chemical bonds. An ideal energetic material is a substance with high performance, safety and shelf life. Many recent researches have concentrated on the synthesis or the development of new energetic materials with optimized properties, such as thermal stability, sensitivity and burn rate. The reduction of the particle size of energetic materials from micron to nano-sized is one of the suitable approaches for obtaining desirable properties. Recent progress on the reduction of the particle size of energetic materials is reviewed in this work. The effects of nano-sized particles on the performance of energetic compounds are also investigated.
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 30 poz.., rys., tab., wykr.
Twórcy
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Tehran, Islamic Republic of Iran
  • Department of Chemistry, Iran University of Science and Technology, Tehran, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P.O. Box 83145/115, Isfahan, Islamic Republic of Iran
  • Department of Chemistry, Iran University of Science and Technology, Tehran, Islamic Republic of Iran
Bibliografia
  • [1] (a) Akhavan J., The Chemistry of Explosives, The Royal Society of Chemistry, 2011; (b) Klapötke T.M., Chemistry of High Energy Materials, Walter de Gruyter, Berlin/New York, 2012.
  • [2] Kubota N., Propellants and Explosives: Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
  • [3] Rossi C., Zhang K., Estève D., Alphonse P., Tailhades P., Vahlas C., Nanoenergetic Materials for MEMS: A Review, Journal of Microelectromechanical Systems, 2007, 16(4), 919-931.
  • [4] Pivkina A.N., Frolov Yu.V., Ivanov D.A., Nanosized Components of Energetic Systems: Structure, Thermal Behavior, and Combustion, Combust., Explos. Shock Waves (Eng. Transl.), 2007, 43(1), 51-55.
  • [5] Armstrong R.W., Baschung B., Booth D.W., Samirant M., Enhanced Propellant Combustion with Nanoparticles, Nano Letters, 2003, 3(2), 253-255.
  • [6] De Luca L. T., Galfetti L., Severini F., Meda L., Marra G., Vorozhtsov A. B., Sedoi V. S., Babuk V.A., Burning of Nano-Aluminized Composite Rocket Propellants, Combust., Explos. Shock Waves (Eng. Transl.), 2005, 41(6), 680-692.
  • [7] Popenko E.M., Gromov A.A., Shamina Yu.Yu., Il’in A.P., Sergienko A.V., Popok N.I., Effect of the Addition of Ultrafine Aluminum Powders on the Rheological Properties and Burning Rate of Energetic Condensed Systems, Combust., Explos. Shock Waves (Eng. Transl.), 2007, 43(1), 46-50.
  • [8] Arkhipov V.A., Gorbenko M.V., Gorbenko T.I., Savel’eva L.A., Effect of Ultrafine Aluminum on the Combustion of Composite Solid Propellants at Sub Atmospheric Pressures, Combust., Explos. Shock Waves (Eng. Transl.), 2009, 45(1), 40-47.
  • [9] Pivkina A., Ivanov D., Frolov Yu., Mudretsova S., Nickolskaya A., Schoonman J., Plasma Synthesized Nano-aluminum Powders: Structure, Thermal Properties and Combustion Behavior, J. Therm. Anal. Calorim., 2006, 86(3), 733-738.
  • [10] Piercey D.G., Klapötke T. M., Nano Scale Aluminum − Metal Oxide (Thermite) Reactions for Application in Energetic Materials, Cent. Eur. J. Energ. Mater., 2010, 7(2), 115-129.
  • [11] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behaviour of Organic Energetic Compounds: A Review, J. Hazard. Mater., A84, 2001, 1-26.
  • [12] Zeman S., New Aspects of Initiation Reactivities of Energetic Materials Demonstrated on Nitramines, J. Hazard. Mater., 2006, 132, 155-164.
  • [13] Keshavarz M.H., Shokrolahi A., Esmailpoor K., Zali A., Hafizi H.R., Azarniamehraban J., Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials, Chin. J. Energ. Mater., 2008, 16, 113.
  • [14] Turker L., Recent Developments in the Theory of Explosive Materials, in: Explosive Materials: Classification, Composition and Properties, (T.J. Janssen, Ed.), Nova Science Publishers, Inc., New York, 2011, pp. 1-52.
  • [15] Keshavarz M.H., Important Aspects of Sensitivity of Energetic Compounds: A Simple Novel Approach to Predict Electric Spark Sensitivity, in: Explosive Materials: Classification, Composition and Properties, (T.J. Janssen, Ed.), Nova Science Publishers, Inc., New York, 2011, pp.103-123.
  • [16] Yan Q., Zeman S., Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives Based on Quantum Chemistry Methods: A Brief Review, Int. J. Quantum. Chem., 2012, DOI: 10.1002/qua.24209.
  • [17] Armstrong R.W., Ammon H.L., Elban W.L., Tsai D.H., Investigation of Hot Spot Characteristics in Energetic Crystals, Thermochim. Acta, 2002, 384, 303-313.
  • [18] Yang G., Nie F., Li J., Guo Q., Qiao Z., Preparation and Characterization of Nano- NTO Explosive, J. Energ. Mater., 2007, 25, 35-47.
  • [19] Lee K.Y., Moore D.S., Asay B.W., Llobet A., Submicron-Sized Gamma-HMX, Preparation and Initial Characterization, J. Energ. Mater., 2007, 25, 161-171.
  • [20] Wang J.Y., Huang H., Xu W.Z., Zhang Y.R., Lu B., Xie R.Z., Wang P., Yun N., Prefilming Twin-fluid Nozzle Assisted Precipitation Method for Preparing Nano Crystalline HNS and Its Characterization, J. Hazard. Mater., 2009, 162(2), 842-847.
  • [21] Bayat Y., Zeynali V., Preparation and Characterization of Nano-CL-20 Explosive, J. Energ. Mater., 2011, 29, 281-291.
  • [22] Li J., Brill T.B., Nanostructured Energetic Composites of CL-20 and Binders Synthesized by Sol Gel Methods, Propellants Explos. Pyrotech., 2006, 31(1), 61-69.
  • [23] Shokrolahi A., Zali A., Mousaviazar A., Keshavarz M. H., Hajhashemi H., Preparation of Nano-K-6 (Nano-Keto RDX) and Determination of its Characterization and Thermolysis, J. Energ. Mater, 2011, 29, 115-126.
  • [24] Redner P., Kapoor D., Patel R., Chung M., Martin D., Production and Characterization of Nano-RDX, U.S. Army, RDECOM-ARDEC, Picatinny, NJ 07806-5000, 2006.
  • [25] Song X., Li F., Dependence of Particle Size and Size Distribution on Mechanical Sensitivity and Thermal Stability of Hexahydro-1,3,5-trinitro-1,3,5-triazine, Defence Science Journal, 2009, 59(1), 37-42.
  • [26] Yana Q.L., Zeman S., Elbeih A., Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs), Thermochim. Acta, 2012, 537, 1-12.
  • [27] Lee J.S., Hsu C.K., Thermal Properties and Shelf Life of HMX–HTPB Based Plastic-Bonded Explosives, Thermochim. Acta, 2002, 392-393, 153-156.
  • [28] Huang B., Qia Z., Nie F., Cao M., Su J., Huang H., Hu C., Fabrication of FOX-7 Quasi-three-dimensional Grids of One-dimensional Nanostructures via a Spray Freeze-drying Technique and Size-dependence of Thermal Properties, J. Hazard. Mater., 2010, 184, 561-566.
  • [29] Pei C., Li Z., Luo Q., Yang G., Nie F., Huang H., Preparation and Characterization of Nano Structured HMX, Nanoscience, 2006, 11(3), 234-237.
  • [30] Yang G., Nie F., Huang H., Zhao L., Pang W., Preparation and Characterization of Nano-TATB Explosive, Propellants Explos. Pyrotech., 2006, 31(5), 390-394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e0dd85e-6d8e-465b-a1a3-11263f846ff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.