Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the expanding need for renewable and sustainable energy resources, the demand for biomass derived bio-oil particularly microalgae or macroalgae based bio-oil is growing. In this regard, understanding the characteristics of bio-oil as a function of several influencing operational parameters is essential. In this study modelling and simulation technique based on Aspen HYSYS was applied to investigate the characteristics of macroalgae Ulva prolifera derived bio-oil from Hydrothermal Liquefaction (HTL) process as a function of the influencing parameters like temperature, kinematic viscosity, and weight percent of the bio-oil assay, cut yield behaviour, and standard liquid density. Modelling and simulation help to optimise the process parameters and design the process layout for large-scale production. According to the simulation results the cut yield of off gases, light naphtha, heavy naphtha, light distillate, heavy distillate, gas oil and residues are shown at specific final boiling point (FBP) temperatures of 70 °C, 70 °C - 110 °C, 110 °C - 221.1 °C, 221.1 °C - 304.4 °C, 304.4 °C - 371.1 °C, 371.1 °C - 537.8 °C and 537.7 °C respectively. Whereas, above a temperature of 300 °C, the weight percentage of aromatic components increased steadily. The increase in percentage composition of the aromatic components is due to the reduction of the paraffinic components. The density of the liquid bio-oil was steadily increasing until a temperature of 200 °C.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India, phone +91-8056829293, +91-8608641999
autor
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India, phone +91-8056829293, +91-8608641999
Bibliografia
- [1] Wang J, Yang Y, Bently Y, Geng, Liu X. Assessment of bioenergy from a global perspective: A review. Sustainability. 2018;10(8):2739. DOI: 10.3390/su10082739.
- [2] Xu YP, Duan PG, Wang F, Guan QQ. Liquid fuel generation from algal biomass via a two-step process: Effect of feedstocks. Biotech for Biofuels. 2018;11(83):1-16. DOI: 10.1186/s13068-018-1083-2.
- [3] Lutzu G-A, Dunford N-T. Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology. Environ Tech. 2019; 40:1027-34. DOI: 10.1080/09593330.2017.1415983.
- [4] Converti A, Casazza AA, Ortiz, EY, Perego P. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Chem Eng Processing Process Intensification. 2009;48(6):1145-51. DOI: 10.1016/j.cep.2009.03.006.
- [5] Nanda S, Rana R, Sarangi P, Dalai A, Kozinski J. A broad introduction to first second and third generation biofuels. Recent Advancements Biofuel Bioenergy Utyliz. 2018;1-25. DOI: 10.1007/978-981-13-1307-3_1.
- [6] Zhou N, Dunford NT. Characterization of green microalgae and cyanobacteria isolated from the great salt plains. Transactions of the ASABE. 2017;60:283-90. DOI: 10.13031/trans.12136.
- [7] Tokarska KB, Gillett NP, Weaver AJ, Arora VK, Eby M. The climate response to five trillion tonnes of carbon. Nature Climate Change. 2016;6:851-5. DOI: 10.1038/nclimate3036.
- [8] Medina ME, Miranda P, Gálvez MJL, Dufour J. Techno-economic assessment of a hydrothermal liquefaction process for energy recovery from food waste. Computer Aided Chem Eng. 2020;48:1729-34. DOI: 10.1016/B978-0-12-823377-1.50289-5.
- [9] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621-39. DOI: 10.1111/j.1365-313X.2008.03492.x.
- [10] Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu DT, et al. Waste to bioenergy: a review on the recent conversion technologies. BMC Energy. 2019;1(1):4. DOI: 10.1186/s42500-019-0004-7.
- [11] Pearce M, Shemfe M, Sansom C. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae. Appl Energy. 2016;166:19-26. DOI: 10.1016/j.apenergy.2016.01.005.
- [12] Hossain M-R, Khalekuzzaman M, Kabir S-B, Islam M-B, Bari Q-H. Production of light oil-prone biocrude through co-hydrothermal liquefaction of wastewater-grown microalgae and peat. J Analytical Appl Pyrolysis, 2022;161:105423. DOI: 10.1016/j.jaap.2021.105423.
- [13] Guiry MD. How many species of algae are there? J Phycology. 2012;48:1057-63. DOI: 10.1111/j.1529-8817.2012.01222.x.
- [14] Gollakota A, Kishore N, Gu S. A review on hydrothermal liquefaction of biomass. Renew Sust Energy Revi. 2018; 81,1378-92. DOI: 10.1016/j.rser.2017.05.178.
- [15] Fernandes AC, Biswas B, Kumar J, Bhaskar T, Muraleedharan UD. Valorization of the red macroalga Gracilaria corticata by hydrothermal liquefaction: Product yield improvement by optimization of process parameters. Bioresource Techn Reports. 2021;15(1):100796. DOI: 10.1016/j.biteb.2021.100796.
- [16] Sayeda MA, Entesar A, Sanaa AEE, Guzine ElD, El-Khatib KM, et al. Algal fuel production by industry: process simulation and economic assessment. Handbook of Algal Biomass. 2022;20:635-52. DOI: 10.1016/B978-0-12-823764-9.00029-7.
- [17] Ma C, Geng J, Zhang D, Ning X. Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil. J Energy Institute. 2020;93:303-11. DOI: 10.1016/j.joei.2019.03.001.
- [18] Wu W, Huang C-M, Tsai Y-H. Design and validation of a microalgae biorefinery using machine learning-assisted modeling of hydrothermal liquefaction. Algal Res. 2023;74:103230. DOI: 10.1016/j.algal.2023.103230.
- [19] Fan Y, Hornung U, Dahmen N. Hydrothermal liquefaction of sewage sludge for biofuel application: A review on fundamentals, current challenges and strategies. Biomass Bioenergy. 2022;165:106570. DOI: 10.1016/j.biombioe.2022.106570.
- [20] Guo Y, Yeh T, Song W, Xu D, Wang S. A review of bio-oil production from hydrothermal liquefaction of algae. Renew Sust Energy Rev. 2015;48:776-90. DOI: 10.1016/j.rser.2015.04.049.
- [21] Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energy Rev. 2011;15(3):1615-24. DOI: 10.1016/j.rser.2010.11.054.
- [22] Mastalinezhad FB, Osfouri S, Azin R. Production and characterization of biocrude from Persian Gulf Sargassum angustifolium using hydrothermal liquefaction: Process optimization by response surface methodology. Biomass Bioenergy. 2023;178:106963. DOI: 10.1016/j.biombioe.2023.106963.
- [23] Anastasakis K, Ross AB. Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel. 2015;139:546-53. DOI: 10.1016/j.fuel.2014.09.006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e063dcb-8fa8-44ee-a489-2c8593f0eb23