Identyfikatory
Warianty tytułu
Zmiany koncentracji cząstek i parametrów powietrza wewnętrznego w klasach w sezonie grzewczym i letnim
Języki publikacji
Abstrakty
Simultaneous measurements of the indoor and outdoor particle mass (PM) and particle number (PN) concentrations as well as the air temperature, relative humidity (RH), and CO2 concentrations have been conducted in 6 occupied (L) and unoccupied (V) classrooms in 3 secondary schools in Lublin, Poland, in the heating (H) and summer (S) seasons. The schools were located in residential areas where the majority of private houses are heated by means of coal-burning stoves. The ratios of the average particle concentrations in occupied and unoccupied classrooms (L/V) were higher during the heating season measurements. The ratios of the average particle concentrations during the measurements in the heating and summer seasons (H/S) were higher in occupied classrooms. In both seasons the average PM and PN concentrations amounted to 239 μg/m3 and 7.4×103/cm3in the occupied classrooms, and to 76 μg/m3 and 5.4×103cm3 in the unoccupied classrooms, respectively. The particle exposures experienced by students were higher in the monitored classrooms than outdoors and were on average about 50% higher in the heating than in the summer season. A positive correlation between mass concentrations of coarse particles and indoor air temperature, RH and CO2 concentrations in both seasons was observed. The concentrations of fine particles were negatively correlated with the indoor air parameters in the heating season, and positively correlated in the summer season.
Pomiary masowych (PM) i ilościowych (PN) koncentracji cząstek, jak również temperatury, wilgotności względnej (RH) i stężenia CO2 przeprowadzono w 3 gimnazjalnych szkołach w Lublinie w sezonie grzewczym (H) i letnim (S). Szkoły były zlokalizowane w dzielnicach, w których większość prywatnych domów ogrzewana jest piecami węglowymi. W każdej ze szkół wybrano 2 klasy, w których wykonano pomiary przy obecności (L) i nieobecności (V) uczniów. Równoległe pomiary przeprowadzono dla powietrza zewnętrznego. Stosunki średnich koncentracji cząstek w klasach z uczniami i bez uczniów (L/V) były większe w sezonie grzewczym. Stosunki średnich koncentracji cząstek podczas pomiarów w sezonie grzewczym i letnim (H/S) były większe w klasach z uczniami. W obydwu sezonach średnie koncentracje PM i PN w klasach z uczniami wynosiły odpowiednio 239 μg/m3 i 7,4×103/cm3, a w klasach bez uczniów 76 μg/m3 i 5,4×103cm3. Ekspozycje uczniów w klasach były wyższe niż na zewnątrz i były średnio o ok. 50% większe w sezonie grzewczym. W obydwu sezonach zaobserwowano dodatnią korelację pomiędzy masową koncentracją grubych cząstek a temperaturą, RH i stężeniem CO2 w powietrzu wewnętrznym. Koncentracje drobnych cząstek były ujemnie skorelowane z parametrami powietrza wewnętrznego w sezonie grzewczym i dodatnio w sezonie letnim.
Czasopismo
Rocznik
Tom
Strony
15--28
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- [1] Alshitawi, M.S., & Awbi, H.B. (2011). Measurement and prediction of the effect of students’ activities on airborne particulate concentration in a classroom, HVAC&R Research 17, 4, 446-464.
- [2] Bin, Zhao, & Wu, Jun (2007). Particle deposition in indoor environments: analysis of influencing factors, Journal of Hazardous Materials, 147, 439-448.
- [3] Blondeau, P., Iordache, V., Poupard, O., Genin, D., & Allard, F. (2005). Relationship between outdoor and indoor air quality in eight French schools, Indoor Air, 15, 2-12.
- [4] Borgini, A., Tittarelli, A., Ricci, C., Bertoldi, M., De Saeger, E., & Crosignani, P. (2011). Personal exposure to PM2.5 among high-school students in Milan and background measurements: The EuroLifeNet study, Atmospheric Environment, 45, 4147-4151.
- [5] Braniš, M., & Šafránek, J. (2011). Characterization of coarse particulate matter in school gyms, Environmental Research, 111, 4, 485-491.
- [6] Braniš, M., Řezáčová, P., & Domasová, M. (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5 and PM1 in a classroom, Environmental Research, 99, 143-149.
- [7] Dumała, S.M., & Dudzińska, M.R. (2013). Microbiological Indoor Air Quality in Polish Schools, Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 15, 231-244.
- [8] Dudzińska, M.R. (2011). Volatile Organic Compounds in Private Cars and Public Vehicles, Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 13, 101-116.
- [9] Dudzińska, M.R., Staszowska, A., & Polednik, B. (2009). Preliminary study of effect of furniture and finishing materials on formaldehyde concentration in office rooms. Environment Protection Engineering, 35, 3, 225-233.
- [10] Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B., & Ruden, H. (2007). Particulate matter in the indoor air of classrooms - exploratory results from Munich and surrounding area, Atmospheric Environment, 41, 854-866.
- [11] Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Kiranoglu, M., & Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air: Atmospheric Environment, 42, 6597-6605.
- [12] Guo H., Morawska, L., He, C.R., & Gilbert, D. (2008). Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom: Atmospheric Environment, 42, 757-768.
- [13] Heudorf, U., Neitzert, V., & Spark, J. (2009). Particulate matter and carbon dioxide in classrooms - The impact of cleaning and ventilation, International Journal of Hygiene and Environmental Health, 212, 45-55.
- [14] Hinds, C.W. (2005). Aerosols Handbook. Measurement, Dosimetry, and Health Effects, CRC Press 2005.
- [15] Hussein T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K.E.J., & Kulmala, J. (2005). Emission Rates Due to Indoor Activities: Indoor Aerosol Model Development, Evaluation, and Applications, Aerosol Science and Technology, 39, 1111-1127.
- [16] Hussein T., Hameri, K., Heikkinen, M.S.A., & Kulmala, M. (2005). Indoor and outdoor particle size characterization at a family house in Espoo-Finland, Atmospheric Environment., 39, 6397-3709.
- [17] Martuzevicius, D., Grinshpun, S.A., Lee, T., Hu, S., Biswas, P., Reponen, T., & LeMasters, G. (2008). Traffic-related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations, Atmospheric Environment, 42, 6575-6585.
- [18] Mendell, M.J., & Heath, G.A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature, Indoor Air, 15, 1, 27-52.
- [19] Morawska, L. (2000). Control of Particles Indoors - State of the Art. Proceedings of Healthy Buildings 2000, Espoo, Finland, 2, 9-20.
- [20] Morawska, L., He, C., Johnson, G., Guo, H., Uhde, E., & Ayoko, G. (2009). Ultrafine Particles in Indoor Air of School: Possible Role of Secondary Organic Aerosols, Environmental Science & Technology, 43, 24, 9103-9109.
- [21] Morawska, L., & Salthammer, T. (2003). Indoor environment: airborne particles and settled dust, Wiley-VCH.
- [22] Mosley, R.B., Greenwell, D.J., Sparks, L.E., Guo, Z., Tucker, W.G., Fortmann, R.C., & Whitfield, C. (2001). Penetration of Ambient Fine Particles into the Indoor Environment, Aerosol Science and Technology, 34, 127-136.
- [23] Mullen, N.A., Bhangar, S., Hering, S.V., Kreisberg, N.M., & Nazaroff, W.W. (2011). Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California. Indoor Air, 21, 77-87.
- [24] Nazaroff, W.W. (2004). Indoor particle dynamics, Indoor Air, 14, 175-183.
- [25] Połednik, B. (2011). Aerosol particle concentrations and indoor air parameters in school classrooms. Management of Indoor Air Quality, Dudzińska (ed), Taylor & Francis Group, London, 31-38.
- [26] Połednik, B., Raczkowski, A., & Dumała, S. (2007). Aerosol particle concentration and the thermal conditions in a lecture room, Environmental Engineering - Pawłowski, Dudzińska, Pawłowski (eds), Taylor & Francis Group, 387-390, London, 2007.
- [27] Połednik, B., & Dudzińska, M.R. (2010). Ventilation Control Based on the CO2 and Aerosol Concentration and the perceived Air Quality Measurements - a Case Study, Archives of Environmental Protection, 36, 4, 67-80.
- [28] Son, B.S., Song, M.R., & Yang, W.H. (2006). A study on PM10 and VOCs concentrations of indoor environment in school and recognition of indoor air quality, Proceedings of Indoor Air, 827-832.
- [29] Steinemann, A. (2004). Human exposure, health hazards, and environmental regulations, Environmental Impact Assessment Review, 24, 7-8, 695-710.
- [30] Weichenthal S., Dufresne, A., & Infante-Rivard, C. (2007). Indoor ultra-fine particles and childhood asthma: exploring a potential concern, Indoor Air, 17, 81-97.
- [31] Weichenthal S., Dufresne, A., Infante-Rivard, C., & Joseph, L. (2008) Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: model development and evaluation, Environmental Research, 106, 349-360.
- [32] www.e-lublin.pl/miasto-informacje/lublin-w-liczbach.php. 06.2011.
- [33] Zhang, Q., & Zhu, Y. (2012). Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air, 22, 33-42.
- [34] Zwoździak A., Sówka I., Fortuna, M., Balińska-Miśkiewicz, M., Willak-Janc, E., & Zwoździak, J. (2013). Influence of PM1, PM2.5, PM10 Concentrations in Indoor School Environment on Spirometric Parameters in Schoolchildren, Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 15, 2022-2038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e027299-5868-4d1d-9336-b31b27bc8ee1