PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of biogas production from animal manure in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Potencjał produkcji biogazu z odchodów zwierzęcych w Polsce
Języki publikacji
EN
Abstrakty
EN
The substrates to biogas production in anaerobic digestion, except plant materials, can also be animal feces and manure. It should be highlighted that Poland is one of leaders in the European Union in animal breeding. However, there is no precise data in the literature on the potential of biogas production from animal feces in this country. The aim of the paper was to analyze the biogas production potential from manure in Poland. The aim of work included anaerobic digestion research following materials: cow manure, pig manure, poultry manure and sheep manure. In the next step, based on the obtained results of the biogas yield, energy potential calculations were made. The methane yield for the investigated feedstock materials in the batch culture technology was performed following the internal procedures developed based on the adapted standards, i.e. DIN 38 414-S8 and VDI 4630. Animal wastes were obtained from the Agricultural Experimental Stations of Poznan University of Life Sciences (Poznan, Poland). On a base of achieved results it was concluded that tested substrates have a high energy potential (approx. 28.52 GWh of electricity). The largest potential for electricity production was found in chicken manure (about 13.86 GWh) and cow manure (about 12.35 GWh). It was also shown which regions of Poland have the best chance for development of agriculture biogas plants (Wielkopolskie and Mazowieckie voivodships) and where the potential is the least (Lubuskie and Opolskie voivodeships).
PL
Substratami do produkcji biogazu w procesie fermentacji beztlenowej, obok materiałów roślinnych, mogą być odchody zwierzęce. Należy podkreślić, że Polska jest jednym z liderów w Unii Europejskiej w zakresie hodowli zwierząt. Jednak, w aktualnej literaturze nie ma dokładnych danych na temat potencjału produkcji biogazu z odchodów zwierzęcych w tym kraju. Celem pracy była analiza potencjału produkcji biogazu z obornika w Polsce. Zakres prac obejmował przeprowadzenie badań fermentacji beztlenowej następujących materiałów: obornika bydlęcego, obornika trzody chlewnej, obornika drobiowego i obornika owczego. W kolejnym etapie, w oparciu o uzyskane wyniki wydajności biogazu, dokonano obliczeń potencjału energetycznego. Badania wydajności metanowej dla badanych materiałów wsadowych w technologii okresowej zostały przeprowadzone zgodnie z procedurami wewnętrznymi opracowanymi w oparciu o zaadaptowane normy, tj. DIN 38 414-S8 i VDI 4630. Materiały do badań pobrane zostały z Zakładów Doświadczalnych Uniwersytetu Przyrodniczego w Poznaniu. Na podstawie uzyskanych wyników stwierdzono, że badane podłoża mają duży potencjał energetyczny (około 28,52 GWh energii elektrycznej). Największy potencjał produkcji energii stwierdzono dla obornika kurzego (ok. 13,86 GWh) oraz bydlęcego (ok. 12,35 GWh). Wykazano również, które regiony Polski mają największe szanse na rozwój biogazowni rolniczych (województwo wielkopolskie i mazowieckie), a w których potencjał produkcji jest najmniejszy (województwo lubuskie i opolskie).
Rocznik
Strony
99--108
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Poznań University of Life Sciences, Poland, Institute of Biosystems Engineering
autor
  • Poznań University of Life Sciences, Poland, Institute of Biosystems Engineering
  • Poznań University of Life Sciences, Poland, Institute of Biosystems Engineering
  • Częstochowa University of Technology, Poland, Institute of Environmental Engineering
  • Poznań University of Life Sciences, Poland, Institute of Biosystems Engineering
  • Poznań University of Life Sciences, Poland, Institute of Biosystems Engineering
Bibliografia
  • 1. Baral, K.R., Jégo, G., Amon, B., Bol, R., Chantigny, M.H., Olesen, J.E. & Petersen, S.O. (2018). Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation, Agricultural Systems, 166, pp. 26-35, DOI: 10.1016/j.agsy.2018.07.009.
  • 2. Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W. & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems, Renewable and Sustainable Energy Reviews, 81, pp. 306-312, DOI: 10.1016/j.rser.2017.07.032.
  • 3. Bułkowska, K., Białobrzeski, I., Gusiatin, Z.M., Klimiuk, E. & Pokój, T. (2015). ADM1-based modeling of anaerobic codigestion of maize silage and cattle manure - calibration of parameters and model verification (part II), Archives of Environmental Protection, 41, 3, pp. 20-27, DOI: 10.1515/aep-2015-0027.
  • 4. Cieślik, M., Dach, J., Lewicki, A., Smurzyńska, A., Janczak, D., Pawlicka-Kaczorowska, J., Boniecki, P., Cyplik, P., Czekała, W. & Jóźwiakowski, K. (2016). Methane fermentation of the maize straw silage under meso- and thermophilic conditions, Energy, 115, 2, pp. 1495-1502, DOI: 10.1016/j.energy.2016.06.070.
  • 5. Ciotola, R.J., Lansing, S. & Martin, J.F. (2011). Energy analysis of biogas production and electricity generation from small-scale agricultural digesters, Ecological Engineering, 37, 11, pp. 1681-1691, DOI: 10.1016/j.ecoleng.2011.06.031.
  • 6. Czekała, W. (2018). Agricultural biogas plants as a chance for the development of the agri-food sector, Journal of Ecological Engineering, 19, 2, pp. 179-183, DOI: 10.12911/22998993/83563.
  • 7. Czekała, W., Gawrych, K., Smurzyńska, A., Mazurkiewicz, J., Pawlisiak, A., Chełkowski, D. & Brzoski, M. (2017). The possibility of functioning microbiogas plant in selected farm, Journal of Water and Land Development, 35, pp. 19-25, DOI: 10.1515/jwld-2017-0064.
  • 8. Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., Bugała, A., Lewicki, A., Cieślik, M., Typańska, D. & Mazurkiewicz, J. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust, Energy, 159, pp. 1118-1122, DOI: 10.1016/j.energy.2018.06.090.
  • 9. Czekała, W., Smurzyńska, A., Cieślik, M., Boniecki, P. & Kozłowski, K. (2016). Biogas efficiency of selected fresh fruit covered by the Russian embargo, Energy and Clean Technologies Conference Proceedings, SGEM 2016, VOL III: 227-233.
  • 10. Dach, J., Boniecki, P., Przybył, J., Janczak, D., Lewicki, A., Czekała, W., Witaszek, K., Rodriguez Carmona, P.C. & Cieślik, M. (2014). Energetic efficiency analysis of the agricultural biogas plant in 250 kW(e) experimental installation, Energy, 69, pp. 34-38, DOI: 10.1016/j.energy.2014.02.013.
  • 11. Dach, J., Koszela, K., Boniecki, P., Zaborowicz, M., Lewicki, A., Czekała, W., Skwarcz, J., Wei, Q., Piekarska-Boniecka, H. & Białobrzewski, I. (2016). The use of neural modelling to estimate the methane production from slurry fermentation processes, Renewable and Sustainable Energy Reviews, 56, pp. 603-610, DOI: 10.1016/j.rser.2015.11.093.
  • 12. Deublein, D. & Steinhauser, A. (2008). Biogas from waste and renewable sources: an introduction, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • 13. DIN 38 414 (1985). Determination of the fouling behavior “mud and sediments”. Beuth Verlag GmbH, Berlin 1985. (in German)
  • 14. Directive 2009/28/EC of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, (http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32009L0028 (24.04.18)).
  • 15. Dzikuć, M. & Piwowar, A. (2016). Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland, Renewable and Sustainable Energy Reviews, 55, pp. 856-862, DOI: 10.1016/j.rser.2015.11.027.
  • 16. Energy Regulatory Office (2017). National Report of the President of the Energy Regulatory Office, (https://www.ure.gov.pl/pl/publikacje/raporty-dla-komisji-eu/3343,RaportydlaKomisjiEuropejskiej.html (15.10.18)).
  • 17. Energy Regulatory Office (2018). Map of the RES, (https://www.ure.gov.pl/uremapoze/mapa.html (10.10.18)).
  • 18. Eurostat Statistics Explained (2017). Energy from renewable sources, (http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_from_renewable_sources (5.03.18)).
  • 19. Gizińska-Górna, M., Czekała, W., Jóźwiakowski, K., Lewicki, A., Dach, J., Marzec, M., Pytka, A., Janczak, D., Kowalczyk-Juśko, A. & Listosz, A. (2016). The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes, Ecological Engineering, 95, pp. 534-541, DOI: 10.1016/j.ecoleng.2016.06.055.
  • 20. Gomez, C.C. (2013). Biogas as an energy option: an overview. In: The Biogas Handbook, Science, Production and Applications, Woodhead Publishing Limited, pp. 1-16, DOI: 10.1533/9780857097415.1.
  • 21. Hoffmann, B.S., Szklo, A. & Schaeffer, R. (2012). An evaluation of the techno-economic potential of co-fi ring coal with woody biomass in thermal power plants in the south of Brazil, Biomass Bioenergy, 45, pp. 295-302, DOI: 10.1016/j.biombioe.2012.06.016.
  • 22. Holm-Nielsen, J.B., Al Seadi, T. & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization, Bioresource Technology, 100, pp. 5478-5484, DOI: 10.1016/j.biortech.2008.12.046.
  • 23. Igras, J. & Kopiński, J. (2007). The consumption of mineral and natural fertilizers in the regional system, in: Checking the suitability of indicators for the assessment of sustainable management of agricultural environment resources in selected farms, communes and voivodeships, IUNG, Puławy, pp. 107-116.
  • 24. Kalinichenko, A. & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway, Archives of Environmental Protection, 45, 1, pp. 68-83, DOI: 10.24425/aep.2019.126423.
  • 25. KOWR (2018). Substrates to biogas production, (http://bip.kowr.gov.pl/informacje-publiczne/odnawialne-zrodla-energii/biogazrolniczy/dane-dotyczace-dzialalnosci-wytworcow-biogazurolniczego-w-latach-2011-2017 (12.08.18)).
  • 26. Kozłowski, K., Dach, J., Lewicki, A., Cieślik, M., Czekała, W., Janczak, D. & Brzoski, M. (2018). Laboratory simulation of an agricultural biogas plant start-up, Chemical Engineering & Technology, 41, pp. 711-716, DOI: 10.1002/ceat.201700390.
  • 27. Lindmark, J., Thorin, E., Fdhila, R.B. & Dahlquista, E. (2014). Effects of mixing on the result of anaerobic digestion: Review, Renewable and Sustainable Energy Reviews, 40, pp. 1030-1047, DOI: 10.1016/j.rser.2014.07.182.
  • 28. Malińska, K., Zabochnicka-Świątek, M. & Dach, J. (2014). Effects of biochar amendment on ammonia emission during composting of sewage sludge, Ecological Engineering, 71, pp. 474-478, DOI: 10.1016/j.ecoleng.2014.07.012.
  • 29. Mao, C., Feng, Y., Wang, X. & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion, Renewable and Sustainable Energy Reviews, 45, pp. 540-555, DOI: 10.1016/j.rser.2015.02.032.
  • 30. National Center for Agricultural Support (2017). Substrates for biogas plants 2011-2017, (http://bip.kowr.gov.pl/informacje-publiczne/odnawialne-zrodla-energii/biogaz-rolniczy/dane-dotyczacedzialalnosci-wytworcow-biogazu-rolniczego-w-latach-2011-2017 (6.03.18)).
  • 31. Piwowar, A., Dzikuć, M. & Adamczyk, J. (2016). Agricultural biogas plants in Poland - selected technological, market and environmental aspects, Renewable Sustainable Energy Review, 58, pp. 69-74, DOI: 10.1016/j.rser.2015.12.153.
  • 32. Pokój, T., Gusiatin, Z.M., Bułkowska, K. & Dubis, B. (2014). Production of biogas using maize silage supplemented with residual glycerine from biodiesel manufacturing, Archives of Environmental Protection, 40, 4, pp. 17-29, DOI: 10.2478/aep-2014-0035.
  • 33. Priyanto, D.E., Ueno, S., Sato, N., Kasai, H., Tanoue, T. & Fukushima, H. (2016). Ash transformation by co-fi ring of coal with high ratios of woody biomass and effect on slagging propensity, Fuel, 174, pp. 172-179, DOI: 10.1016/j.fuel.2016.01.072.
  • 34. Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H. & Khanal, S.K. (2015). Anaerobic digestion of lignocellulosic biomass: challenges and opportunities, Bioresource Technology, 178, pp. 178-186, DOI: 10.1016/j.biortech.2014.09.103.
  • 35. Scarlat, N., Fahl, F., Dallemand, J.F., Monforti, F. & Motola, V. (2018). A spatial analysis of biogas potential from manure in Europe, Renewable and Sustainable Energy Reviews, 94, pp. 915-930, DOI: 10.1016/j.rser.2018.06.035.
  • 36. Sgroi, F., Di Trapani, A.M., Foderà, M., Testa, R. & Tudisca, S. (2015). Economic performance of biogas plants using giant reed silage biomass feedstock, Ecological Engineering, 81, pp. 481-487, DOI: 10.1016/j.ecoleng.2015.04.068.
  • 37. Statistics Poland (2017). Agriculture in 2016, (https://stat.gov.pl/en/topics/agriculture-forestry/agriculture/agriculture-in-2016,4,13.html (10.06.18)).
  • 38. Statistics Poland (2018). Agriculture in 2017, (http://stat.gov.pl/en/topics/agriculture-forestry/agriculture/agriculture-in-2017,4,14.html (22.10.18)).
  • 39. Urban, S. & Dzikuć, M. (2013). The impact of electricity production in coal-fi red power plants on environment, Economic and Environment, 2, pp. 84-92.
  • 40. VDI 4630 (2006). Fermentation of organic materials, Characterization of the substrate, sampling, collection of material data, fermentation tests, Verein Deutscher Ingenieure, Düsseldorf.
  • 41. Wiater, J. & Horysz, M. (2017). Organic waste as a substrate in biogas production, Journal of Ecological Engineering, 18, 5, pp. 226-234, DOI: 10.12911/22998993/74629.
  • 42. Widera, M., Kasztelewicz, Z. & Ptak, M. (2016). Lignite mining and electricity generation in Poland: The current state and future prospects, Energy Policy, 92, pp. 151-157, DOI: 10.1016/j.enpol.2016.02.002.
  • 43. Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2015). The pyrolysis and gasification of digestate from agricultural biogas plant, Archives of Environmental Protection, 41, 3, pp. 70-75, DOI: 10.1515/aep-2015-0032.
  • 44. Wrzeszcz, W. (2010). Balance of organic soil in individual farms covered by FADN agricultural accounting. Studies and reports of IUNG 19, (http://www.iung.pulawy.pl/images/wyd/pib/zesz19.pdf (23.10.18)).
  • 45. Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J. & Dong, R. (2016). Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control, Bioresource Technology, 205, pp. 750-781, DOI: 10.1016/j.biortech.2016.01.021.
  • 46. Zhang, Q., Hu, J. & Lee, D.J. (2016). Biogas from anaerobic digestion processes: Research updates, Renewable Energy, 98, pp. 108-119, DOI: 10.1016/j.renene.2016.02.029.
  • 47. Zhou, C., Liu, G., Wang, X. & Qi, C. (2016). Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage, Bioresource Technology, 218, pp. 418-427, DOI: 10.1016/j.biortech.2016.06.134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dfc1803-437b-4b30-b218-517df008741e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.