Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present a novel configuration of an NPR mode-locked Er-doped laser. This new optical setup uses voltage controlled LC cells to replace standard retarders (quarter- and half-waveplates) inside the laser cavity. Using this novel, mechanical-adjustment-free setup a mode-locking was obtained with sub-500 fs pulse duration and an average power exceeding 40 mW. Presented results show that using simple LC cells, an optical layout of an NPR mode-locked laser can be greatly simplified.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
113--117
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
- Wrocław Research Centre EIT+, 147 Stablowicka Str., 54-066 Wrocław, Poland
autor
- Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
autor
- Wrocław Research Centre EIT+, 147 Stablowicka Str., 54-066 Wrocław, Poland
autor
- Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
autor
- Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
autor
- Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
autor
- Wrocław Research Centre EIT+, 147 Stablowicka Str., 54-066 Wrocław, Poland
Bibliografia
- 1. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser”, Opt. Express 14, 5968–5974 (2006).
- 2. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye,“Quantum-noise-limited optical frequency comb spectroscopy”, Phys. Rev. Lett. 107, 233002 (2011).
- 3. R.M. Smith and M.A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges”, Appl. Spectrosc. Rev. 46, 636–679 (2011).
- 4. P.R. Herman, A. Oettl, K.P. Chen, and R.S. Marjoribanks, “Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains”, in Proc. SPIE 3616, pp. 148–155 (1999).
- 5. D.U. Kim, H. Song, W. Song Iii, H.-S. Kwon, and D.Y. Kim, “A custom-built two-photon microscope based on a mode-locked Yb3+ doped fibre laser”, Proc. SPIE 8227, 82271F−82271F-82277 (2012).
- 6. M.P. Nikodem, A. Budnicki, G. Tomczyk, and K.M. Abramski, “Investigation of passively mode-locked erbium doped fibre ring laser due to nonlinear polarization rotation”, Opt. Electron. Rev. 16, 194–198 (2008).
- 7. K. Krzempek, G. Sobon, P. Kaczmarek, and K. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fibre laser”, Laser Phys. Lett. 10, 105103 (2013).
- 8. F.X. Kurtner, J.A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what's the difference?”, IEEE Selected Topics in Quantum Electronics 4, 159–168 (1998).
- 9. J. Sotor, G. Sobon, and K.M. Abramski, “Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber”, Opt. Electron. Rev. 20, 362–366 (2012).
- 10. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fibre laser using carbon nanotube saturable absorber”, Opt. Express 16, 9429–9435 (2008).
- 11. A. Miniewicz, J. Parka, S. Bartkiewicz, and A. Januszko, “Liquid crystals as materials for real-time holographic optical devices”, Pure Appl. Opt.: J. European Optical Society, Part A7, 179–189 (1998).
- 12. W. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay”, Opt. Express 11, 2053–2059 (2003).
- 13. D. U. Kim, H. Song, W. Song, H.-S. Kwon, M. Sung, and D.Y. Kim, “Two-photon microscopy using an Yb3+-doped fibre laser with variable pulse widths”, Opt. Express 20, 12341–12349 (2012).
- 14. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review”, Opt. Commun. 284, 3669–3692 (2011).
- 15. E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z. Raszewski, L. Soms, W. Piecek, P. Perkowski, J. Kędzierski, R. Dąbrowski, M. Olifierczuk, K. Garbat, and E. Miszczyk, “Liquid crystal cell for space-borne laser rangefinder to space mission applications”, Opt. Electron. Rev. 20, 315–322 (2012).
- 16. Z. Zhuang, S.-W. Suh, and J.S. Patel, “Polarization controller using nematic liquid crystals”, Opt. Lett. 24, 694–696 (1999).
- 17. E. Nowinowski-Kruszelnicki, J. Kędzierski, Z. Raszewski, L. Jaroszewicz, R. Dąbrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, M. Sutkowski, K. Ogrodniak, P. Morawiak, and E. Miszczyk, “High birefringence liquid crystal mixtures for electro-optical devices”, Opt. Appl. 42, 167–180 (2012).
- 18. Z. Zu Xing, X. Kun, W. Jian, H.-X. Bing, and L.J. Tong, “Two different operation regimes of fibre laser based on non-linear polarization rotation: passive mode-locking and multi-wavelength emission”, IEEE Photonic Technol. Lett. 20, 979–981 (2008).
- 19. M. Nikodem and K. Abramski, “169 MHz repetition frequency all-fibre passively mode-locked erbium doped fibre laser”, Opt. Commun. 283, 109–112 (2010).
- 20. L.M. Zhao, C. Lu, H.Y. Tam, P.K. A. Wai, and D.Y. Tang, “High fundamental repetition rate fiber lasers operated in strong normal dispersion regime”, IEEE Photonics Technol. Lett. 21, 724–726 (2009).
- 21. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser”, Opt. Lett. 32, 1566–1568 (2007).
- 22. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator”, Opt. Express 18, 1667–1676 (2010).
- 23. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers”, Opt. Lett. 37, 3426–3428 (2012).
- 24. T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation”, Appl. Phys. B101, 565–570 (2010).
- 25. A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation”, Opt. Commun. 267, 162–169 (2006).
- 26. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronicontrolled mode locking self-start in fibre lasers with non-linear polarisation evolution”, Opt. Express 21, 20626–20631 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3df74500-67d3-4296-8078-8e8ed1539dfd