PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimal Base for Finite Topological Space by Matrix Method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Topological base plays a foundational role in topology theory. However, few works have been done to find the minimal base, which would make us difficult to interpret the internal structure of topological spaces. To address this issue, we provide a method to convert the finite topological space into Boolean matrix and some properties of minimal base are investigated. According to the properties, an algorithm(URMB) is proposed. Subsequently, the relationship between topological space and its sub-space with respect to the base is concentrated on by Boolean matrix. Then, a fast algorithm(MMB) is presented, which can avoid a mass of redundant computations. Finally, some numerical experiments are given to show the advantage and the effectiveness of MMB compared with URMB.
Słowa kluczowe
Wydawca
Rocznik
Strony
167--183
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
  • School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361000, China
autor
  • Department of Mathematics and Statistics, Minnan Normal University, Zhangzhou, 363000, Fujian, China
  • College of Applied Science, Beijing University of Technology, Beijing 100124, China
autor
  • Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
Bibliografia
  • [1] Bubenik P. Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 2012, 16(1):77-102. URL http://jmlr.org/papers/v16/bubenik15a.html.
  • [2] Blumberg A J, Mandell M A. Quantitative Homotopy Theory in Topological Data Analysis. Foundations of Computational Mathematics, 2013, 13(6):885-911. doi:10.1007/s10208-013-9177-5.
  • [3] Carlsson G. Topology and data. Bulletin of the American Mathematical Society, 2009, 46(46):255-308. doi:10.1090/S0273-0979-09-01249-X.
  • [4] Diestel R. Graph theory. Mathematical Gazette, 2010, 173(502):67-128.
  • [5] Galton A. A generalized topological view of motion in discrete space. Theoretical Computer Science, 2003, 305(1-3):111-134. doi:10.1016/S0304-3975(02)00701-6.
  • [6] Holzinger A. On Topological Data Mining. Springer Berlin Heidelberg, LNCS vol. 8401, 2014 pp. 331-356. doi:10.1007/978-3-662-43968-5_19.
  • [7] Kondo M. On the structure of generalized rough sets. Information Sciences, 2006, 176(5): 589-600. doi:10.1016/j.ins.2005.01.001.
  • [8] Largeron C, Bonnevay S. A pretopological approach for structural analysis. Information Sciences, 2002, 144(1-4): 169-185. doi:10.1016/S0020-0255(02)00189-5.
  • [9] Li J J. Topological methods on the theory of covering generalized rough sets. Pattern recognition and artificial intelligence, 2004, 17(1): 7-10.
  • [10] Lashin E F, Kozae A M, Khadra A A A, Medhat T. Rough set theory for topological spaces. International Journal of Approximate Reasoning, 2005, 40(1-2): 35-43. doi:10.1016/j.ijar.2004.11.007.
  • [11] Lai H, Zhang D. Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems, 2006, 157(14):1865-1885. doi:10.1016/j.fss.2006.02.013.
  • [12] Mislove M W. Topology, domain theory and theoretical computer science. Topology and its Applications, 1998, 89(1-2): 3-59. doi:10.1016/S0166-8641(97)00222-8.
  • [13] Preparata F P, Shamos M I. Computational geometry : an introduction. Texts and Monographs in Computer Science, 1985, 47(176).
  • [14] Qin K, Yang J, Pei Z. Generalized rough sets based on reflexive and transitive relations. Information Sciences, 2008, 178(21):4138-4141. doi:10.1016/j.ins.2008.07.002.
  • [15] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326. doi:10.1126/science.290.5500.2323.
  • [16] Stong R E. Finite topological spaces. Transactions of the American Mathematical Society, 1966, 123(2):325-340.
  • [17] Scott D S. Outline of a Mathematical Theory of Computation. 1970, 14(5):59-69. ISBN-10:0902928015, 13:978-0902928015.
  • [18] Scott D S. Domains for denotational semantics, Automata, Languages and Programming. Lecture Notes in Computer Science, 1982, 140:577-613.
  • [19] Stadler B M R, Stadler P F. Generalized topological spaces in evolutionary theory and combinatorial chemistry. Journal of Chemical Information and Computer Sciences, 2002, 42(3): 577-585. doi:10.1021/ci0100898.
  • [20] Salama A S. Topological solution of missing attribute values problem in incomplete information tables. Information Sciences, 2010, 180(5):631-639. doi:10.1016/j.ins.2009.11.010.
  • [21] Vinnicombe G. Frequency domain uncertainty and the graph topology. Automatic Control IEEE Transactions on, 1993, 38(9):1371-1383.
  • [22] Zhang H, Ouyang Y, Wang Z. Note on “Generalized rough sets based on reflexive and transitive relations”. Information Sciences, 2009, 179(4):471-473. doi:10.1016/j.ins.2008.10.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3df63b71-58f6-4385-9956-96387780534d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.