PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of speed dependent fault parameters in a coupled rotor-bearing system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In rotating machineries, misalignment is considered as the second most major cause of failure after unbalance. In this article, model-based multiple fault identification technique is presented to estimate speed-dependent coupling misalignment and bearing dynamic parameters in addition with speed independent residual unbalances. For brevity in analysis, a simple coupled rotor bearing system is considered and analytical approach is used to develop the identification algorithm. Equations of motion ingeneralized co-ordinates are derived with the help of Lagrange’s equation and least squares fitting approach is used to estimate the speed-dependent fault parameters. Present identification algorithm requires independent sets of forced response data which are generated with the help of different sets of trial unbalances. To avoid/suppress the ill-conditioning of regression equation, independent sets of forced response data are obtained by rotating the rotor in clock-wise and counter clock-wise directions, alternatively. Robustness of algorithm is checked for different levels of measurement noise.
Rocznik
Strony
327--347
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Design, National Institute of Technology Rourkela, 769008 Rourkela, Odisha,India
autor
  • Department of Industrial Design, National Institute of Technology Rourkela, 769008 Rourkela, Odisha,India
Bibliografia
  • [1] A.T. Tadeo, K.L. Cavalca, and M.J. Brennan. Dynamic characterization of a mechanical coupling for a rotating shaft. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 225(3):604–616, 2011. doi: 10.1243/09544062JMES2214.
  • [2] M. Lal and R. Tiwari. Quantification of multiple fault parameters in flexible turbo–generator systems with incomplete rundown vibration data. Mechanical Systems and Signal Processing, 41(1-2):546–563, 2013. doi: 10.1016/j.ymssp.2013.06.025.
  • [3] R. Tiwari, A.W. Lees, and M.I. Friswell. Identification of speed–dependent bearing parameters. Journal of Sound and Vibration, 254(5):967–986, 2002. doi: 10.1006/jsvi.2001.4140.
  • [4] K.M. Al-Hussain and I. Redmond. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. Journal of Sound and Vibration, 249(3):483–498, 2002. doi: 10.1006/jsvi.2001.3866.
  • [5] K.M. Al-Hussain. Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. Journal of Sound and Vibration, 266(2):217–234, 2003. doi: 10.1016/S0022-460X(02)01627-9.
  • [6] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
  • [7] R. Tiwari and V. Chakravarthy. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor–bearing systems. Mechanical Systems and Signal Processing, 20(7):1590–1614, 2006. doi: 10.1016/j.ymssp.2006.01.005.
  • [8] P. Jayaswal, A.K. Wadhwani, and K.B. Mulchandani. Machine fault signature analysis. International Journal of Rotating Machinery, 1–10, 2008. doi: 10.1155/2008/583982.
  • [9] A.K. Jalan and A.R. Mohanty. Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady–state condition. Journal of Sound and Vibration, 327(3-5):604–622, 2009. doi: 10.1016/j.jsv.2009.07.014.
  • [10] A.W. Lees, J.K. Sinha, and M.I. Friswell. Model–based identification of rotating machines. Mechanical Systems and Signal Processing, 23(6):1884–1893, 2009. doi: 10.1016/j.ymssp.2008.08.008.
  • [11] C.Y. Tsai and S.C. Huang. Transfer matrix for rotor coupler with parallel misalignment. Journal of Mechanical Science and Technology, 23(5):1383–1395, 2009. doi: 10.1007/s12206-0081216-9.
  • [12] J. Jing and G. Meng. A novel method for multi-fault diagnosis of rotor system. Mechanism and Machine Theory, 44(4):697–709, 2009. doi: 10.1016/j.mechmachtheory.2008.05.002.
  • [13] T.H. Patel and A.K. Darpe. Vibration response of misaligned rotors. Journal of Sound and Vibration, 325(3):609–628, 2009. doi: 10.1016/j.jsv.2009.03.024.
  • [14] T.H. Patel and A.K. Darpe. Experimental investigations on vibration response of misaligned rotors. Mechanical Systems and Signal Processing, 23(7):2236–2252, 2009. doi: 10.1016/j.ymssp.2009.04.004.
  • [15] S. Sarkar, A. Nandi, S. Neogy, J.K. Dutt, and T.K. Kundra. Finite element analysis of misaligned rotors on oil-film bearings. Sadhana, 35(1):45–61, 2010. doi: 10.1007/s12046-010-0005-1.
  • [16] Q.W. Yang. A new damage identification method based on structural flexibility disassembly. Journal of Vibration and Control, 17(7):1000–1008, 2011. doi: 10.1177/1077546309360052.
  • [17] G.N.D.S. Sudhakar and A.S. Sekhar. Identification of unbalance in a rotor bearing system. Journal of Sound and Vibration, 330(10):2299–2313, 2011. doi: 10.1016/j.jsv.2010.11.028.
  • [18] S. Ganesan and C. Padmanabhan. Modelling of parametric excitation of a flexible coupling–rotor system due to misalignment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(12):2907–2918, 2011. doi: 10.1177/0954406211411549.
  • [19] M. Lal and R. Tiwari. Multi–fault identification in simple rotor–bearing–coupling systems based on forced response measurements. Mechanism and Machine Theory, 51:87–109, 2012. doi: 10.1016/j.mechmachtheory.2012.01.001.
  • [20] M. Laland, R. Tiwari. Identification of multiple faults with Incomplete response measurements in rotor-bearing-coupling systems. In ASME 2012 Gas Turbine India Conference, pages 613–620, Mumbai, India, 1 December 2012. doi: 10.1115/GTINDIA2012-9542.
  • [21] M. Lal and R. Tiwari. Identification of multiple fault parameters in a rigid-rotor and flexible-bearing-coupling system: An experimental investigation. In ASME 2013 Gas Turbine India Conference, Bangalore, India, 5–6, December 2013. doi: 10.1115/GTINDIA2013-3774.
  • [22] M. Lal and R. Tiwari. Experimental estimation of misalignment effects in rotor-bearing-coupling systems. In Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, pages 779–789, Springer, 2015. doi: 10.1007/978-3-319-06590-8_64.
  • [23] M. Lal and R. Tiwari. Experimental identification of shaft misalignment in a turbo-generator system. Sadhana, 43:80, 2018. doi: 10.1007/s12046-018-0859-1.
  • [24] P. Pennacchi, A. Vania, and S. Chatterton. Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings. Mechanical Systems and Signal Processing, 30:306–322, 2012. doi: 10.1016/j.ymssp.2011.11.020.
  • [25] Y. Lei, J. Lin, Z. He, and M.J. Zuo. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 35(1-2):108–126, 2013. doi: doi.org/10.1016/j.ymssp.2012.09.015.
  • [26] S.K. Kuppa and M. Lal. Characteristic parameter estimation of AMB supported coupled rotor system. In ASME 2017 Gas Turbine India Conference, Bangalore, India ,7–8 December, 2017. doi: 10.1115/GTINDIA2017-4641.
  • [27] R.V. Jategaonkar. Flight Vehicle System Identification: A Time-Domain Methodology. 2nd edition, AIAA, Reston, Virginia, 2015. doi: 10.2514/4.102790.
  • [28] P. Lichota, J. Szulczyk, D.A. Norena, and F.A. Vallejo Monsalve. Power spectrum optimization in the design of multisine manoeuvre for identification purposes, Journal of Theoretical and Applied Mechanics, 55(4):1193–1203, 2017. doi: 10.15632/jtam-pl.55.4.1193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3df46283-8151-4cdd-a719-69def354750e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.