PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the Crystalline Densities of Aliphatic Nitrates by Quantum Chemistry Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crystal density is a basic and important parameter for predicting the detonation performance of explosives, and nitrate esters are a type of compound widely used in the military context. In this study, thirty-one aliphatic nitrates were investigated using the density functional theory method (B3LYP) in combination with six basis sets (3-21G, 6-31G, 6-31G*, 6-31G**, 6-311G* and 6-31+G**) and the semiempirical molecular orbital method (PM3). Based on the geometric optimizations at various theoretical levels, the molecular volumes and densities were calculated. Compared with the available experimental data, the densities calculated by various methods are all overestimated, and the errors of the PM3 and B3LYP/3-21G methods are larger than those of other methods. Considering the results and the computer resources required by the calculations, the B3LYP/6-31G* method is recommended for predicting the crystalline densities of organic nitrates using a fitting equation. The results obtained with this method are slightly better than those reported by Keshavarz and Rice. In addition, the effects of various groups (such as –ONO2, –OH, –Cl, –O–, and –CH2–) on the densities are also discussed, which is helpful for the design of new molecules in terms of practical requirements.
Słowa kluczowe
Rocznik
Strony
412--432
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
  • [1] Gilbert, P.S.; Jack, A. Research Towards Novel Energetic Materials. J. Energetic Mater. 1986, 45: 5-28.
  • [2] Agrawal, P.J. Recent Trends in High-energy Materials. Prog. Energy Combust. Sci. 1998, 24: 1-30.
  • [3] Zhang, M.X.; Eaton, P.E.; Gilardi, R. Hepta- and Octa-nitrocubane. Angew. Chem. Int. Ed. 2000, 39: 401-404.
  • [4] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [5] Zhang, X.H.; Yun, Z.H. Explosive Chemistry. National Defence Industry Press, Beijing, People’s Republic of China, 1989, ISBN: 9787118076479.
  • [6] Tarver, C.M. Density Estimations for Explosives and Related Compounds Using the Group Additivity Approach. J. Chem. Eng. Data 1979, 24:136–145.
  • [7] Stine, J.R. Prediction of Crystal Densities of Organic Explosives by Group Additivity. Los Alamos National Laboratory’s Report, New Mexico, 1981.
  • [8] Ammon, H.L. New Atom/Functional Group Volume Additivity Data Bases for the Calculation of the Crystal Densities of C-, H-, N-, O-, F-, S-, P-, Cl-, and Brcontaining Compounds. Struct. Chem. 2001, 12: 205-212.
  • [9] Karfunkel, H.R.; Gdanitz, R.J. Ab Initio Prediction of Possible Crystal Structures for General Organic Molecules. J. Comp. Chem. 1992, 13: 1171-1183.
  • [10] Holden, J.R.; Du, Z.; Ammon, H.L. Prediction of Possible Crystal Structures for C, H, N, O, and F Containing Organic Compounds. J. Comp. Chem. 1993, 14: 422-437.
  • [11] Pivina, T.S.; Shcherbukhin, V.V.; Molchanova, M.S.; Zefirov, N.S. Computerassisted Prediction of Novel Target High-energy Compounds. Propellants Explos. Pyrotech. 1995, 20: 144-146.
  • [12] Dzyabchenko, A.V.; Pivina, T.S.; Arnautova, E.A. Prediction of Structure and Density for Organic Nitramines. J. Mol. Struct. 1996, 378: 67-82.
  • [13] Rice, B.M.; Sorescu, D.C. Assessing a Generalized CHNO Intermolecular Potential Through Ab Initio Crystal Structure Prediction. J. Phys. Chem. B 2004, 108: 17730-17739.
  • [14] Keshavarz, M.H. New Method for Calculating Densities of Nitroaromatic Explosive Compounds. J. Hazard. Mater. 2007, 45: 263-269.
  • [15] Keshavarz, M.H. Prediction of Densities of Acyclic and Cyclic Nitramines, Nitrate Esters and Nitroaliphatic Compounds for Evaluation of Their Detonation Performance. J. Hazard. Mater. 2007, 143: 437-442.
  • [16] Keshavarz, M.H. Novel Method for Predicting Densities of Polynitro Arene and Polynitro Heteroarene Explosives in Order to Evaluate Their Detonation Performance. J. Hazard. Mater. 2009, 165: 579-588.
  • [17] Keshavarz, M.H.; Pouretedal, H.R. A Reliable Simple Method to Estimate Density of Nitroaliphatics, Nitrate Esters and Nitramines. J. Hazard. Mater. 2009, 169: 1581-69.
  • [18] Keshavarz, M.H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. A New Computer Code for Assessment of Energetic Materials with Crystal Density, Condensed Phase Enthalpy of Formation, and Activation Energy of Thermolysis. Propellants Explos. Pyrotech. 2013, 38: 95-102.
  • [19] Keshavarz, M.H.; Soury, H.; Motamedoshariati, H.; Dashtizadeh, A. Improved Method for Prediction of Density of Energetic Compounds Using Their Molecular Structure. Struct. Chem. 2015, 26:455-466.
  • [20] Keshavarz, M.H.; Rahimi, R.; Akbarzadeh, A.R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials Using Their Molecular Structures. Fluid Phase Equilib. 2015, 402:1-8.
  • [21] Rahimi, R.; Keshavarz, M.H.; Akbarzadeh, A.R. Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures. Cent. Eur. J. Energ. Mater. 2016, 13: 73-101.
  • [22] Politzer, P.; Martinez, J.; Murray, J.S.; Concha, M.C.; Toro-Labbé, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107: 2095-2101.
  • [23] Politzer, P.; Martinez, J.; Murray, J.S.; Concha, M.C. An Electrostatic Correction for Improved Crystal Density Predictions of Energetic Ionic Compounds. Mol. Phys. 2010, 108: 1391-1396.
  • [24] Rice, B.M.; Byrd, E.F.C. Evaluation of Electrostatic Descriptors for Predicting Crystalline Density. J. Comput. Chem. 2013, 34: 2146-2151.
  • [25] Zhang, J.; Xiao, H.M. Computational Studies on the Infrared Vibrational Spectra, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanism of Octanitrocubane. J. Chem. Phys. 2002, 116: 10674-10683.
  • [26] Xu, X.J.; Xiao, H.M.; Gong, X.D.; Ju, X.H.; Chen, Z.X. Theoretical Studies on the Vibrational Spectra, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes. J. Phys. Chem. A 2005, 109:11268-11274.
  • [27] Xu, X.J.; Xiao, H.M.; Ju, X.H.; Gong, X.D.; Zhu, W.H. Computational Studies on Polynitro- Hexaazaadmantanes as Potential High Energy Density Materials (HEDMs). J. Phys. Chem. A 2006, 110: 5929-5933.
  • [28] Qiu, L.; Xiao, H.M.; Gong, X.D.; Ju, X.H.; Zhu, W.H. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. J. Phys. Chem. A 2006, 110: 3797-3807.
  • [29] Xiao, H.M.; Xu, X.J.; Qiu, L. Theoretical Design of High Energy Density Materials. Science Press, Beijing, 2008; ISBN 9787030206190.
  • [30] Wang, G.X.; Shi, C.H.; Gong, X.D.; Xiao, H.M. Theoretical Investigation on Structures, Density, Detonation Properties and Pyrolysis Mechanism of the Derivatives of HNS. J. Phys. Chem. A 2009, 113: 1318-1326.
  • [31] Qiu, L.M.; Gong, X.D.; Wang, G.X.; Zheng, J.; Xiao, H.M. Looking for High Energy Density Compounds among 1,3-Bishomopentaprismane Derivatives with –CN, –NC, and –ONO2 Group. J. Phys. Chem. A 2009, 113: 2607-2614.
  • [32] Qiu, L.; Xiao, H.M.; Gong, X.D. Ju, X.H.; Zhu, W. Crystal Density Predictions for Nitramines Based on Quantum Chemistry. J. Hazard. Mater. 2007, 141: 280-288.
  • [33] Wang, G.X.; Gong, X.D.; Liu, Y.; Du, H.C.; Xiao, H.M. Prediction of Crystalline Densities of Polynitro Arenes for Estimation of Their Detonation Performance Based on Quantum Chemistry. THEOCHEM 2010, 953(1): 163-169.
  • [34] Brand, J.C.D.; Cawthon, T.M. The Vibrational Spectrum of Methyl Nitrate. J. Am. Chem. Soc. 1955, 77: 319-323.
  • [35] Gong, X.D.; Xiao, H.M. Ab Initio and Density Functional Methods Studies on the Conformations and Thermodynamic Properties of Propyl Nitrate. THEOCHEM 2000, 498: 181-190.
  • [36] Türker, L.; Erkoç, Ş. Density Functional Theory Calculations for [C2H4N2O6](n) (n = 0, +1, −1). J. Hazard. Mater. A 2006, 136: 164-169.
  • [37] Li, M.M.; Wang, G. X.; Guo, X.D.; Song, H.C. Theoretical Study on the Vibrational Spectra, Thermodynamic Properties, Density, Detonation Properties and Pyrolysis Mechanism of Four Trinitrate Esters. THEOCHEM 2009, 100: 90-95.
  • [38] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods. I. Method. J. Comput. Chem. 1989, 10: 209-220.
  • [39] Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37: 785-789.
  • [40] Becke, A.D. Density-functional Thermochemistry, II. The Effect of the Perdew-Wang Generalized-gradient Correlation Correction. J. Chem. Phys. 1992, 97: 9173-9177.
  • [41] Binkley, J.S.; Pople, J.A.; Hehre, W.J. Self-consistent Molecular Orbital Methods. 21. Small Split-valence Basis Sets for First-row Elements. J. Am. Chem. Soc. 1980, 102: 939-947.
  • [42] Rassolov, V.A.; Ratner, M.A.; Pople, J.A .; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-row Atoms. J. Comp. Chem. 2001, 22: 976-984.
  • [43] Hariharan, P.C.; Pople, J.A. Influence of Polarization Functions on MO Hydrogenation Energies. Theor. Chim. Acta 1973, 28: 213-222.
  • [44] Petersson, G.A.; Al-Laham, M.A. A Complete Basis Set Model Chemistry. II. Openshell Systems and the Total Energies of the First-row Atoms. J. Chem. Phys. 1991, 94: 6081-6090
  • [45] McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations, I. Second Row Atoms, Z = 11-18. J. Chem. Phys. 1980, 72: 5639-5648.
  • [46] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, J.T.; Kudin, K.N.; Burant, J.C,; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.;Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.;Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03.Gaussian, Inc., Pittsburgh PA, 2003; ISBN O-9636769-6-2.
  • [47] Tarver, C.M. Density Estimations for Explosives and Related Compounds Using the Group Additivity Approach. J. Chem. Eng. Data. 1979, 24: 136-145.
  • [48] Zhang, X.F. Performance Manual of Raw and Processed Materials of Overseas Explosives. Weapon Industry Press, Beijing, 1991; ISBN 9787801726353.
  • [49] Zhong, Y.P.; Hu, Y.D.; Jiang, H.Z. Performance Manual of Overseas Explosives. Weapon Industry Press, Beijing, 1990; ISBN 9787802485990.
  • [50] Dong, H.S.; Zhou, F.F. High Energy Explosives and Their Corresponding Performance. Science Press, Beijing, 1989; ISBN 9787030206190.
  • [51] Chen, Z.H. Explosives Manual. China Coal Industry Publishing House, 1980; ISBN 7502001085.
  • [52] Gong, X.D. Potden v.2.0. Nanjing. Nanjing University of Science and Technology, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3df0b4bc-cb36-43fc-ad4a-ce920f5919ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.