PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nitrate and Ammonia Contamination in Groundwater and their Effect on Microbial Community in Apulia Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to its widespread presence in groundwater, nitrate contamination has become a major global concern. Identifying the different sources of this contamination, particularly those related to agricultural practices, is therefore crucial to assess its negative impacts. The European Nitrates Directive (91/676/EEC) requires the protection of all natural freshwater resources with a maximum nitrate concentration threshold of 50 mgNO3+ L-1, applicable to all groundwater, regardless of its intended use. Many studies have used a chemical approach to identify these contaminations, but one of the possible approaches to identify contamination and the source of the contamination is a microbiological approach. An aquifer’s unique groundwater fingerprint: its hydrology, chemistry, and geology are shaped by the communities of heterotrophic bacteria that thrive in this underground environment. The present study carries out an evaluation of the impact of nitrate and ammonia on the bacterial community of groundwater, in particular by studying the correlations between the two chemical forms analyzed and some of the native species most present in nitrifying and denitrifying groundwater. These evaluations make it possible to identify the microbial species subject to the variation of ammonia and nitrate concentrations and to evaluate the extent of variation in the natural environment, providing useful information on the variation of the chemical compound, validating the innovative thesis of being used as a natural tracer for the identification of potential direct or indirect contamination.
Twórcy
  • Water Research Institute- National Research Council, Bari 70132, Italy
  • Engeo soc.cop. a.r.l., Bari 70122, Italy
  • Water Research Institute- National Research Council, Bari 70132, Italy
Bibliografia
  • 1. Amanambu A.C., Obarein O.A., Mossa J., Li L., Ayeni S.S., Balogun O., Oyebamiji A., Ochege F.U. 2020. Groundwater system and climate change: Present status and future considerations, Journal of Hydrology, 589, 125-163.
  • 2. Amoatey P., Baawain M.S. 2019. Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 1272-1287.
  • 3. Australian State of the Environment Committee (ASEC) 2001. Australia State of the Environment 2001, Independent Report to the Commonwealth Minister for the Environment and Heritage, CSIRO. Publishing on behalf of the Department of the Environment and Heritage, Canberra.
  • 4. Calabrese A., Mandrelli L., Blonda M. 2020. Earlier observation of applicability of biomolecular and chemical analysis to soil and shallow groundwater in nitrogen biogeochemical local cycle evaluation. IOSR Journal of Biotechnology and Biochemistry, 6(1), 58-69.
  • 5. Chang N.B., Wen D., McKenna A.M., Wanielista M.P. 2018. The impact of carbon source as electron donor on composition and concentration of dissolved organic nitrogen in biosorption-activated media for stormwater and groundwater cotreatment. Environmental Science & Technology, 52(16), 9380-9390.
  • 6. Chen N., Valdes D., Marlin C., Blanchoud H., Guerin R., Rouelle M., Ribstein P. 2019. Water, nitrate and atrazine transfer through the unsaturated zone of the Chalk aquifer in northern France. Science of the Total Environment, 652, 927-938.
  • 7. Department for Environment, Food and Rural Affairs (DEFRA) 2002. The Government’s Strategic Review of Diffuse Water Pollution from Agriculture in England and Wales. Defra, London.
  • 8. European Environment Agency (EEA) 2007. Present concentration of nitrate in groundwater bodies in European countries.
  • 9. Ferris M.J., Muyzer G., Ward D.M. 1996. Denaturing gradient gel electrophoresis profles of 16S rRNA-defned populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol, 62(2), 340–346.
  • 10. Foster S., Bjerre T.K. 2023. Diffuse agricultural pollution of groundwater: addressing impacts in Denmark and Eastern England. Water Quality Research Journal, 58(1), 14-21.
  • 11. Gerbl F., Weidler G.W., Wanek W., Erhard A., StanLotter H. 2014. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Front Microbiol, 5, 1–17.
  • 12. Gutiérrez M., Biagioni R.N., Alarcón-Herrera M. T., Rivas-Lucero B.A. 2018. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, 1513-1522.
  • 13. Haller L., McCarthy P., O’Brien T., Riehle J., Stuhldreher T. 2013. Nitrate pollution of groundwater. In: Alpha Water Systems INC.
  • 14. Hermans T., Goderniaux P., Jougnot D., Fleckenstein J.H., Brunner P., Nguyen F., Linde N., Huisman J.A., Bour O., Alvis J.C., Hoffmann r., Palacios a., Cooke A.K., Pardo-Álvarez A., Blazevic L., Pouladi B., Haruzi P., Visentini A.F., Nogueira G.E.H., TiradoConde J., Looms M.C., Kenshilikova M., Davy P., Le Borgne T. 2022. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology Hydrology and Earth System Sciences Discussions. 27(1), 1-55.
  • 15. Hofmann R., Uhl J., Hertkorn N., Griebler C. 2020. Linkage between dissolved organic matter transformation, bacterial carbon production, and diversity in a shallow oligotrophic aquifer: results from flowthrough sediment microcosm experiments. Frontiers in microbiology, 11, 543-567.
  • 16. Hudak P.F. 2018. Spatial and temporal trends of nitrate, chloride, and bromide concentration in an alluvial aquifer, North‐Central Texas, USA. Environmental Quality Management, 27(4), 79-86.
  • 17. Ittner L. D., Junghans M., & Werner I. 2018. Aquatic fungi: a disregarded trophic level in ecological risk assessment of organic fungicides. Frontiers in Environmental Science, 6, 105.
  • 18. Jiang Q., Xia F., Zhu T., Wang D., Quan Z. 2019. Distribution of comammox and canonical ammonia‐oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons. Journal of applied microbiology, 127(2), 533-543.
  • 19. Johnson H., Simpson E.M., Troldborg M., Ofterdinger U., Cassidy R., Soulsby C., Comte J.C. 2023. Evaluating groundwater nitrate status across the river Ythan catchment (Scotland) following two decades of nitrate vulnerable zone designation. Environments, 10(4), 67.
  • 20. Kieft T. L., Phelps T. J. 2018. Life in the slow lane: activities of microorganisms in the subsurface. In Microbiology of the Terrestrial Deep Subsurface, CRC Press, 137-164.
  • 21. Lal K., Sehgal M., Gupta V., Sharma A., John O., Gummidi B., Kumari A. 2020. Assessment of groundwater quality of CKDu affected Uddanam region in Srikakulam district and across Andhra Pradesh, India. Groundwater for sustainable development, 11, 100432.
  • 22. Liang Y., Ma R., Wang Y., Wang S., Qu L., Wei W., Gan Y. 2020. Hydrogeological controls on ammonium enrichment in shallow groundwater in the central Yangtze River Basin. Science of The Total Environment, 741, 140-350.
  • 23. Lintzos L., Koumaki E., Mendrinou P., Chatzikonstantinou K., Tzamtzis N., Malamis S. 2020. Biological cyanide removal from industrial wastewater by applying membrane bioreactors. Journal of Chemical Technology & Biotechnology, 95(11), 3041-3050.
  • 24. Retter A., Karwautz C., Griebler C. 2021. Groundwater microbial communities in times of climate change. Current Issues in Molecular Biology, 41(1), 509-538.
  • 25. Shafi S., Kamili A.N., Shah M.A., Parray J.A., Bandh S. A. 2017. Aquatic bacterial diversity: Magnitude, dynamics, and controlling factors. Microbial pathogenesis, 104, 39-47.
  • 26. Shoemaker W.R., Locey K.J., Lennon J. T. 2017. A macroecological theory of microbial biodiversity. Nature ecology & evolution, 1(5), 0107.
  • 27. Stuart M.E., Lapworth D.J. 2016. Macronutrient status of UK groundwater: Nitrogen, phosphorus and organic carbon. Science of the total environment, 572, 1543-1560.
  • 28. Swe T., Lombardo P., Ballot A., Thrane J.E., Sample J., Eriksen T.E., Mjelde M. 2021. The importance of aquatic macrophytes in a eutrophic tropical shallow lake. Limnologica, 90, 125910.
  • 29. Thullner M., Regnier P. 2019. Microbial controls on the biogeochemical dynamics in the subsurface. Reviews in Mineralogy and Geochemistry, 85(1), 265-302.
  • 30. Vargas-García M.D.C., Sola F., Vallejos, Á. 2023. Comparative study of microbial diversity in different coastal aquifers: determining factors. Water, 15(7), 13-37.
  • 31. Wang L., Stuart M.E., Lewis M.A., Ward R.S., Skirvin D., Naden P.S., Ascott M.J. 2016. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Science of the Total Environment, 542, 694-705.
  • 32. World Heath Organization (WHO), 1999. Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management E & FN Spon, London
  • 33. World Heath Organization (WHO), 2004. Guidelines for Drinking Water Quality (Third ed.), WHO, Geneva.
  • 34. Zagmajster M., Malard F., Eme D., Culver D.C. 2018. Subterranean Biodiversity Patterns from Global to Regional Scales. In: Moldovan, O., Kováč, Ľ., Halse, S. (Eds) Cave Ecology. Ecological Studies, 235.
  • 35. Zhang H., Hiscock, K.M. 2016. Modelling response of groundwater nitrate concentration in public supply wells to land-use change. Quarterly Journal of Engineering Geology and Hydrogeology, 49(2), 170-182.
  • 36. Ziembińska-Buczyńska A., Banach-Wiśniewska A., Tomaszewski M., Poprawa I., Student S., Cema G., 2019. Ecophysiology and dynamics of nitrogen removal bacteria in a sequencing batch reactor during wastewater treatment start-up. International Journal of Environmental Science and Technology, 16, 4215–4222.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ded4bf3-a557-4654-89c2-677dd86dfdfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.