Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To investigate the effect of reactor performance/configuration of biodiesel production on process parameters (mass & energy consumption, required facilities etc.), two diverse production processes (from vegetable oil) were implemented/designed using Aspen HYSYS V7.2. Two series reactors were taken into account where overall conversion was set to be 97.7% and 70% in first and second processes respectively. Comparative analysis showed that an increase in conversion yield caused to consumption reduction of oil, methanol, cold energy and hot energy up to 9.1%, 22%, 67.16% and 60.28% respectively; further, a number of facilities (e.g. boiler, heat exchanger, distillation tower) were reduced. To reduce mass & energy consumption, mass/heat integration method was employed. Applying integration method showed that in the first design, methanol, cold and hot energy were decreased by 49.81%, 17.46% and 36.17% respectively; while in the second design, oil, methanol, cold and hot energy were decreased by 9%, 60.57% 19.62% and 36.58% respectively.
Czasopismo
Rocznik
Tom
Strony
49--55
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Sahand University of Technology, Biotechnology Research Center, Faculty of Chemical Engineering, Tabriz, Iran
autor
- Sahand University of Technology, Biotechnology Research Center, Faculty of Chemical Engineering, Tabriz, Iran
autor
- Amirkabir University of Technology (TehranPolytechnic), Departmentof Chemical Engineering, Tehran, Iran
Bibliografia
- 1. Gadonneix, P., de Castro, F.B., de Medeiros, N.F., Drouin, R., Jain, C., Kim, Y.D., Ferioli, J., Nadeau, M.J., Sambo, A. & Teyssen, J. (2010). Biofuels: Policies, Standards and Technologies.
- 2. Gutiérrez, L.F., Sánchez, Ó.J. & Cardona, C.A. (2009). Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Biores. Technol. 100(3), 1227–1237. DOI: 10.1016/j.biortech.2008.09.001.
- 3. Mohammadpour, R., Janfaza, S. & Abbaspour-Aghdam, F. (2014). Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: A new application for microalgae. Biores. Technol. 163, 1–5. DOI: 10.1016/j.biortech.2014.04.003.
- 4. Valizadeh Derakhshan, M., Nasernejad, B., Abbaspour-Aghdam, F. & Hamidi, M. (2015). Oil extraction from algae: A comparative approach. Biotechnol. Appl. Bioc. 62(3), 375–382. DOI: 10.1002/bab.1270.
- 5. Tyson, K.S. (2009). Biodiesel Handling and Use Guidelines (3rd ed.). Borough, USA: DIANE Publishing Company.
- 6. Schumacher, L.G. 1995. Biodiesel Emissions Data From Series 60 DDC Engines. in: Bus Operations and Technology Conference. Reno, Nevada.
- 7. Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conv. Manage. 50(1), 14–34. DOI: 10.1016/j.enconman.2008.09.001.
- 8. Agarwal, M., Singh, K. & Chaurasia, S. (2012). Simulation and sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Technol. 14(3), 59–65. DOI: 10.2478/v10026-012-0085-2.
- 9. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Ren Sust. Energy Rev. 16(1), 143–169. DOI: 10.1016/j.rser.2011.07.143.
- 10. Rutz, D. & Janssen, R. 2007. Biofuel technology handbook, Munich, Germany, WIP Renewable Energies.
- 11. Perkins, L.A., Peterson, C.L. & Auld, D.L. 1991. Durability Testing of Transesterified Winter Rape Oil (Brassica Napus L.) as Fuel in Small Bore, Multi-cylinder, DI, CI Engines. Society of Automotive Engineers.
- 12. Pestes, M. & Stanislao, J. (1984). Piston Ring Deposits When Using Vegetable Oil as a Fuel. J. Test Eval. 12(2), 24–32. DOI: 10.1520/JTE10699J.
- 13. Canakci, M. & Van Gerpen, J. (1999). Biodiesel production via acid catalysis. T ASAE 42(5), 1203–1210. DOI: 10.13031/2013.13285.
- 14. Gerpen, J.V. (2005). Biodiesel processing and production. Fuel Process Technol. 86(10), 1097–1107. DOI: 10.1016/j.fuproc.2004.11.005.
- 15. Kusy, P.F. (1982). Transesterification of vegetable oils for fuels. Am. Soc. Agric. Enginee. (4–82), 127–137.
- 16. Balat, M. & Balat, H. (2010). Progress in biodiesel processing. Appl. Energ. 87(6), 1815–1835. DOI:10.1016/j.apenergy.2010.01.012.
- 17. Cho, H.J., Kim, S.H., Hong, S.W. & Yeo, Y.K. (2012). A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel 93(0), 373–380. DOI: 10.1016/j.fuel.2011.08.063.
- 18. Kiss, A.A. & Bildea, C.S. (2012). A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biot. 87(7), 861–879. DOI: 10.1002/jctb.3785.
- 19. Helwani, Z., Othman, M.R., Aziz, N., Kim, J. & Fernando, W.J.N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal A-Gen. 363(1–2), 1–10. DOI: 10.1016/j.apcata.2009.05.021.
- 20. Dawodu, F.A., Ayodele, O.O., Xin, J. & Zhang, S. (2014). Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. J. Chem. Technol. Biot. 89(12), 1898–1909. DOI: 10.1002/jctb.4274.
- 21. Ma, F. & Hanna, M.A. (1999). Biodiesel production: a review. Biores. Technol. 70(1), 1–15. DOI: 10.1016/S0960-8524(99)00025-5.
- 22. Gomez-Castro, F.I., Rico-Ramirez, V., Segovia-Hernandez, J.G., Hernandez-Castro, S. & El-Halwagi, M.M. (2013). Simulation study on biodiesel production by reactive distillation with methanol at high pressure and temperature: Impact on costs and pollutant emissions. Comput. Chem. Eng. 52(0), 204–215. DOI: 10.1016/j.compchemeng.2013.01.007.
- 23. Portha, J.F., Allain, F., Coupard, V., Dandeu, A., Girot, E., Schaer, E. & Falk, L. (2012). Simulation and kinetic study of transesterification of triolein to biodiesel using modular reactors. Chem. Eng. J. 207–208(0), 285–298. DOI: 10.1016/j.cej.2012.06.106.
- 24. Bondioli, P. (2005). Overview from oil seeds to industrial products: Present and future oleochemistry. J. Synth. Lubric. 21(4), 331–343. DOI: 10.1002/jsl.3000210406.
- 25. Yazdani, S.S. & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin Biotech. 18(3), 213–219. DOI: 10.1016/j.copbio.2007.05.002.
- 26. Johnson, D.T. & Taconi, K.A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog. 26(4), 338–348. DOI: 10.1002/ep.10225.
- 27. Veillette, M., Chamoumi, M., Nikiema, J., Faucheux, N. & Heitz, M. (2012). Production of Biodiesel from Microalgae. In: Z. Nawaz, S. Naveed (Eds.), Adv. Chem. Enginee. (245–265). Karachi, Pakistan: InTech.
- 28. Soares, R.R., Simonetti, D.A. & Dumesic, J.A. (2006). Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing. Angew Chem. Int Edit. 45(24), 3982–3985. DOI: 10.1002/anie.200600212.
- 29. Vaidya, P.D. & Rodrigues, A.E. (2009). Glycerol Reforming for Hydrogen Production: A Review. Chem. Eng. Technol. 32(10), 1463–1469. DOI: 10.1002/ceat.200900120.
- 30. Levy, M. (2013). Simulation of Biodiesel Production Using Reactive Distillation (RD). Bachelor of Science degree Dissertation, Department of Chemical Engineering, University of Florida. Gainesville, Florida, United States.
- 31. García, M., Gonzalo, A., Sánchez, J.L., Arauzo, J. & Peña, J.Á. (2010). Prediction of normalized biodiesel properties by simulation of multiple feedstock blends. Biores. Technol. 101(12), 4431–4439. DOI: 10.1016/j.biortech.2010.01.111.
- 32. Galadima, A. & Muraza, O. (2014). Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy 78(0), 72–83. DOI: 10.1016/j.energy.2014.06.018.
- 33. Freedman, B., Pryde, E.H. & Mounts, T.L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61(10), 1638–1643. DOI: 10.1007/bf02541649.
- 34. West, A.H., Posarac, D. & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS. Plant. Biores.Technol. 99(14), 6587–6601. DOI: 10.1016/j.biortech.2007.11.046.
- 35. Pokoo-Aikins, G., Nadim, A., El-Halwagi, M. & Mahalec, V. (2010). Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technol. Envir. 12(3), 239–254. DOI: 10.1007/s10098-009-0215-6.
- 36. Samuel, O., Waheed, M., Bolaji, B. & Dairo, O. (2014). Synthesis of Biodiesel from Nigerian Waste Restaurant Cooking Oil: Effect of KOH Concentration on Yield. Global J. Sci. Enginee. Technol. (15), 1–8.
- 37. Wong, Y. & Devi, S. (2014). Biodiesel Production from used Cooking Oil. Orient. J. Chem. 30(2), 521–528. DOI: 10.13005/ojc/300216.
- 38. Slinn, M. & Kendall, K. (2009). Developing the reaction kinetics for a biodiesel reactor. Biores. Technol. 100(7), 2324–2327. DOI: 10.1016/j.biortech.2008.08.044.
- 39. Ye, J., Tu, S. & Sha, Y. (2010). Investigation to biodiesel production by the two-step homogeneous base-catalyzed transesterification. Biores. Technol. 101(19), 7368–7374. DOI: 10.1016/j.biortech.2010.03.148.
- 40. Chisti, Y. (2007). Biodiesel from microalgae. Biotech. Adv. 25(3), 294–306. DOI: 10.1016/j.biotechadv.2007.02.001.
- 41. Berrios, M. & Skelton, R.L. (2008). Comparison of purification methods for biodiesel. Chem. Eng. J. 144(3), 459–465. DOI: 10.1016/j.cej.2008.07.019.
- 42. Romero, R., Natividad, R. & Martínez, S.L. (2011). Biodiesel production by using heterogeneous catalysts. In: M. Manzanera (Eds.), Alternative Fuel, 3–20. Rijeka, Croatia: InTech.
- 43. Renner, G. & Ekárt, A. (2003). Genetic algorithms in computer aided design. Comp. Aid. Design. 35(8), 709–726. DOI: 10.1016/S0010-4485(03)00003-4.
- 44. Sánchez, E., Ojeda, K., El-Halwagi, M. & Kafarov, V. (2011). Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration. Chem. Eng. J. 176–177(0), 211–216. DOI: 10.1016/j.cej.2011.07.001.
- 45. Zhelev, T.K. & Ridolfi, R. (2006). Energy recovery and environmental concerns addressed through emergy–pinch analysis. Energy 31(13), 2486–2498. DOI: 10.1016/j.energy.2005.10.021.
- 46. Kemp, I.C. (2011). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy (2nd ed.). Oxford, UK: Butterworth-Heinemann.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dea90de-b94a-42b3-836e-00f110e7c237