Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of an earthquake prediction based on monitoring crustal deformation anomalies and thermal anomalies at the epicenter of earthquakes with oblique thrust faulting

Warianty tytułu
Języki publikacji
Is it possible to predict location, time and magnitude of earthquakes through identifying their precursors based on remotely sensed data? Earthquakes are usually preceded by unusual natural incidents that are considered as earthquake precursors. With the recent advances in remote sensing techniques which have made it possible monitoring the earth’s surface with diferent sensors, scientists are now able to better study earthquake precursors. Thus, the present study aims at developing the algorithm of classic PS-InSAR processing for obtaining crustal deformation values at the epicenter of earthquakes with magnitude larger than 5.0 on the Richter scale and with oblique thrust faulting and then after calculating temperature values using remotely sensed thermal imagery at the epicenter of same earthquakes; thermal and crustal deformation anomalies were calculated using data mining techniques before earthquake occurrence. In the next stage, taking the correlation between thermal anomalies and crustal deformation anomalies at the epicenter of the study earthquakes into account, an integrated technique was proposed to predict probable magnitude and time of oblique thrust earthquakes occurrence over the earthquake-prone areas. Eventually, the validity of the proposed algorithm was evaluated for an earthquake with a diferent focal mechanism. The analysis results of the thermal anomalies and crustal deformation anomalies at the epicenter of April 16, 2016, Japan-Kumamoto earthquake of magnitude 7.0 with strike-slip faulting, showed completely diferent trends than the suggested patterns by the proposed algorithm.
Opis fizyczny
Bibliogr. 51 poz.
  • Department of Geomatics Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
  • Department of Geomatics Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
  • 1. Akhoondzadeh M, Parrot M, Saradjian M (2010) Electron and ion density variations before strong earthquakes (M%3e 6.0) using DEMETER and GPS data. Nat Hazards Earth Syst Sci 10:7–18
  • 2. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14(4):R1
  • 3. Brockwell PJ, Davis RA, Fienberg SE (1991) Time-series: theory and methods. Springer, Berlin
  • 4. Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28(1):169–209
  • 5. Calais E, Vergnolle M, San'Kov V et al (2003) GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): implications for current kinematics of Asia. J Geophys Res Solid Earth 108:2501
  • 6. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res Solid Earth 94(B7):9183–9191
  • 7. Graham LC (1974) Synthetic interferometer radar for topographic mapping. Proc IEEE 62(6):763–768
  • 8. Grant RA, Raulin JP, Freund FT (2015) Changes in animal activity prior to a major (M= 7) earthquake in the Peruvian Andes. Phys Chem Earth Parts A/B/C 85:69–77
  • 9. Guo G, Wang B (2008) Cloud anomaly before Iran earthquake. Int J Remote Sens 29:1921–1928
  • 10. Han P, Hattori K, Huang Q et al (2011) Evaluation of ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm by wavelet transform analysis. Nat Hazards Earth Syst Sci 11:965–970
  • 11. Hand DJ (2007) Principles of data mining. Drug Saf 30:621–622
  • 12. Hayakawa M (2013) Possible electromagnetic effects on abnormal animal behavior before an earthquake. Animals 3:19–32
  • 13. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35(16):16302
  • 14. Huang J, Mao F, Zhou W, Zhu X (2008) Satellite thermal IR associated with Wenchuan earthquake in China using MODIS data. In: Paper presented at the proceeding of the 14th world conference on earthquake engineering.
  • 15. Huang F, Li M, Ma Y et al (2017) Studies on earthquake precursors in China: a review for recent 50 years. Geod Geodyn 8:1–12
  • 16. Ingebritsen SE, Manga M (2014) Earthquakes: hydrogeochemical precursors. Nat Geosci 7:697
  • 17. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Modell Softw 53:173–189
  • 18. Lippiello E, Marzocchi W, de Arcangelis L, Godano C (2012) Spatial organization of foreshocks as a tool to forecast large earthquakes. Sci Rep 2:846
  • 19. Lu X, Meng Q, Gu X et al (2016) Thermal infrared anomalies associated with multi-year earthquakes in the Tibet region based on China’s FY-2E satellite data. Adv Space Res 58:989–1001
  • 20. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth's surface. Rev Geophys 36:441–500
  • 21. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138
  • 22. Mohankumar K, Sangeetha K (2018) A study on earthquake prediction using neural network algorithms
  • 23. Molchanov O, Rozhnoi A, Solovieva M et al (2006) Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat Hazards Earth Syst Sci 6:745–753
  • 24. Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467:198
  • 25. Moro M, Saroli M, Stramondo S et al (2017) New insights into earthquake precursors from InSAR. Sci Rep 7:12035
  • 26. Ogata Y, Katsura K (2012) Prospective foreshock forecast experiment during the last 17 years. Geophys J Int 191:1237–1244
  • 27. Parsons, B. (2017) From geodesy to tectonics: observing earthquake processes from space (Augustus Love Medal Lecture). In: Paper presented at the EGU general assembly conference abstracts.
  • 28. Peacock S, Crampin S, Booth DC, Fletcher JB (1988) Shear wave splitting in the Anza seismic gap, southern California: temporal variations as possible precursors. J Geophys Res Solid Earth 93:3339–3356
  • 29. Peltzer G, Rosen P (1995) Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry. Science 268(5215):1333–1336
  • 30. Pio Lucente F, De Gori P, Margheriti L et al (2010) Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake Italy. Geology 38:1015–1018
  • 31. Pohn H, Offield T, Watson K (1974) Thermal inertia mapping from satellite-discrimination of geologic units in Oman. J Res US Geol Surv 2:147–158
  • 32. Pulinets S, Davidenko D (2014) Ionospheric precursors of earthquakes and global electric circuit. Adv Space Res 53:709–723
  • 33. Pulinets S, Ouzounov D, Karelin A, Boyarchuk K, Pokhmelnykh L (2006) The physical nature of thermal anomalies observed before strong earthquakes. Phys Chem Earth Parts A/B/C 31:143–153
  • 34. Qiang Z-J, Kong L-C, Zheng L-Z et al (1997) An experimental study on temperature increasing mechanism of satellitic thermo-infrared. Acta Seismol Sin 10:247–252
  • 35. Rikitake T (1968) Earthquake prediction. Earth Sci Rev 4:245–282
  • 36. Rikitake T (1975) Earthquake precursors. Bull Seismol Soc Am 65:1133–1162
  • 37. Rosen PA, Hensley S, Joughin IR, Li F, Madsen SN, Rodriguez E, Goldstein RM (1998) Synthetic aperture radar interferometry. Proceed IEEE 88(3):333–382
  • 38. Saradjian M, Akhoondzadeh M (2011) Thermal anomalies detection before strong earthquakes (M%3e 6.0) using interquartile, wavelet and Kalman filter methods. Nat Hazards Earth Syst Sci 11:1099–1108
  • 39. Saraf AK, Rawat V, Choudhury S, Dasgupta S, Das J (2009) Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites. Int J Appl Earth Obs Geoinf 11:373–379
  • 40. Spencer JR, Tamppari LK, Martin TZ, Travis LD (1999) Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284(5419):1514–1516
  • 41. Thomas D (1988) Geochemical precursors to seismic activity. Pure Appl Geophys 126:241–266
  • 42. Thomas J, Masci F, Love JJ (2015) On a report that the 2012 M6: 0 earthquake in Italy was predicted after seeing an unusual cloud formation. Nat Hazards Earth Syst Sci 15:1061–1068
  • 43. Tomás R, Romero R, Mulas J et al (2014) Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ Earth Sci 71:163–181
  • 44. Tronin A (2000) Thermal IR satellite sensor data application for earthquake research in China. Int J Remote Sens 21(16):3169–3177
  • 45. Tsai C-H, Chen C-W (2010) An earthquake disaster management mechanism based on risk assessment information for the tourism industry-a case study from the island of Taiwan. Tour Manag 31:470–481
  • 46. Tu PF, Xia L, Li HT, Wu SC (2012) PSInSAR technology research and its application on landslide monitoring. In: Paper presented at the applied mechanics and materials
  • 47. Wang T, Zhuang J, Kato T, Bebbington M (2013) Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data. Geophys Res Lett 40:2631–2635
  • 48. Yang C-S, Kao S-P, Lee F-B, Hung P-S (2004) Twelve different interpolation methods: a case study of Surfer 8.0. In: Paper presented at the Proceedings of the XXth ISPRS congress
  • 49. Yao Y, Chen P, Wu H, Zhang S, Peng W (2012) Analysis of ionospheric anomalies before the 2011 M w 9.0 Japan earthquake. Chin Sci Bull 57:500–510
  • 50. Yue H, Lay T (2011) Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophys Res Lett 38:142
  • 51. Zhang Y, Jiang Z, Huang H et al (2014) Thermal anomalies detection before 2013 Songyuan earthquake using MODIS LST data. In: Paper presented at the 2014 IEEE international geoscience and remote sensing symposium (IGARSS)
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.