PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, mechanical and thermal properties of YSZ thermal barrier coatings deposited by axial suspension plasma spraying

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Yttrium-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are indispensable elements of present-day turbine propulsion systems. The ones deposited with atmospheric plasma spraying (APS) are characterized by required low thermal conductivity, but they are unable to survive frequent thermomechanical loading and therefore their application is limited to parts remaining stationary. Expanding capability of TBCs is sought in various areas, but the one realized through modification of most proliferated apparatus used for plasma spraying (PS) (from radial to axial injection) and substituting micrometric powders with the nano-structured suspension needs least changes in the industry established procedures and offers the highest property improvement. The present experiment covered the deposition of ZrO2-8Y2O3 YSZ TBC using both atmospheric and suspension PS processes. They were performed with commercial micrometric and nano-structured YSZ (8% Y2O3) powders. The coatings morphology and microstructure were characterized with 3D profilometry, scanning and transmission electron microscopy (SEM/TEM) methods. Finally, the coating’s hardness and heat conductivity were measured. This complex approach allowed to state that PS of micrometric t’-ZrO2 powder having an admixture of m-ZrO2 phase is capable of only partial improvement in its homogenization. However, the suspension PS process of nano-structured powder eliminated any traces of the monoclinic phase from the coating. The TEM microstructure observations indicated that the suspension PS coating is built by in-flight solidified droplets as well as by the melted ones flattened on arrival. A surface layer of liquefied material on solid droplets increases their adhesion to surface asperities promoting pseudo-columnar growth of the coating. The preservation of monotonic slow increase of thermal conductivity during heating of the suspension PS coating means, that its pseudo-columnar microstructure is better suited to withstand high strains during such treatment.
Rocznik
Strony
art. no., e89, 2023
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine (NASU), Krzhizhanovsky str, Kyiv 03142, Ukraine
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAS), 25 Reymonta St, 30‑059 Krakow, Poland
  • Laser Processing Research Centre, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av, 25‑314 Kielce, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAS), 25 Reymonta St, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAS), 25 Reymonta St, 30‑059 Krakow, Poland
  • Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30‑059 Krakow, Poland
  • Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30‑059 Krakow, Poland
Bibliografia
  • 1. Miller RA. Thermal barrier coatings for aircraft engines: History and directions. J Therm Spray Technol. 1995;6:35-42. https://doi.org/10.1007/BF02646310.
  • 2. Vasen R, Jarligo MO, Steinke T, Mack D, Stover D. Overview on advanced thermal barrier coatings. Surface Coatings Technol. 2010;205:938-42. https://doi.org/10.1016/j.surfcoat.2010.08.151.
  • 3. Pawłowski L, Blanchart Ph. Industrial chemistry of oxides for emerging applications. 2018;https://doi.org/10.1002/9781119424079
  • 4. Clarke DR, Philipot SR. Thermal barrier coating materials. Materials Today. 2005;6:22-9.
  • 5. Boissonnet G, Chalk C, Nicholls JR, Bonnet G, Pedraza F. Phase stability and thermal insulation of YSZ and erbia-yttria co-doped zirconia EB-PVD thermal barrier coating systems. Surface Coat Technol Elsevier. 2020;389:125566. https://doi.org/10.1016/j.surfcoat.2020.125566.
  • 6. Vassen R. Thermal barrier coatings. Chapter II in Ceramics Science and Technology. Riedel R, I-Wei Chen (Eds). 2013; https://doi.org/10.1002/9783527631971.cho2.
  • 7. Lima RS. Porous APS YSZ TBC manufactured at high powder feed rate (100 g/min) and deposition efficiency (70%): microstructure, bond strength and thermal gradients. J Therm Spray Technol. 2022;31:396-414. https://doi.org/10.1007/s11666-021-01302-y.
  • 8. Patterson T, Leon A, Jayaraj B, Liu J. Thermal cyclic lifetime and oxidation behaviour of air plasma sprayed CoNiCrAlY bond coats for thermal barrier coatings. Surf Coat Technol. 2008;203:437-41. https://doi.org/10.1016/j.surfcoat.2008.08.054.
  • 9. Fauchais P, Vardelle AM, Vardelle M. Thermally sprayed nanoceramic and nanocomposite coatings. 2015;https://doi.org/10.1016/B978-0-12-799947-0.00010-9.
  • 10. Ghasemi R, Vakilifard H. Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength. Ceram Int. 2017;43:8556-63. https://doi.org/10.1016/j.ceramint.2017.03.074.
  • 11. Sanches E, Bannier E, Cantavella V, Salvador MD, Kleyatskina E, Morgiel J, Grzonka J, Boccacini AR. Deposition of Al2O3-TiO2 nanostructured powders by atmospheric plasma spraying. J Therm Spray Technol. 2008;17:329-37. https://doi.org/10.1007/s11666-008-9181-5.
  • 12. Goral A, Żorawski W, Lityńska-Dobrzyńska L. Study of the microstructure of plasma sprayed coatings obtained from Al2O3-13TiO2 nanostructured and conventional powders. Mater Charact. 2014;96:234-40. https://doi.org/10.1016/j.matchar.2014.08.016.
  • 13. Mauer G, Jarligo MO, Marcano D, Rezanka S, Zhou D, Vassen R. Recent developments in plasma spray processes for applications in energy technology, 19th Chemnitz Seminar on Materials Engineering - 19, IOP Conf. Ser.: Mater Sci Eng 2017;181: 012001 https://doi.org/10.1088/1757-899X/181/1/012001.
  • 14. Miranda F, Caliari F, Essiptchouk A, Pertraconi G. Atmospheric plasma spray processes: from micro to nanostructures, in atmospheric pressure from diagnostic to applications, (Ed.) Nikiforov A, Chen Z https://doi.org/10.5772/intechopen.80315.
  • 15. Kozerski S, Łatka L, Pawlowski L, Cernuschi F, Petit F, Pierlot Ch, Podlesak H, Laval J-P. Preliminary study on suspension plasma sprayed ZrO2 + 8 wt% Y2O3 coatings. J Eur Ceram Soc. 2011;31(12):2089-98. https://doi.org/10.1016/j.jeurceramsoc.2011.05.014.
  • 16. Yaghtin M, Yaghtin A, Najafisayar P, Tang Z, Troczynski T. Aging behavior of water-based YSZ suspensions for plasma spraying of thermal barrier coatings. J Therm Spray Technol. 2021;30:97-107. https://doi.org/10.1007/s11666-021-01162-6.
  • 17. ISO 25178–2:2012: Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters.
  • 18. Hartmann J, Nilsson O, Fricke J. Thermal diffusivity measurements on two-layered and three-layered systems with the laser-flash method. High Temp High Press. 1993;25:403-10.
  • 19. Radovic M, Lara-Curzio E, Trejo RM, Wang H, Porter WD. Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity. In advances in solid oxide fuel cells II: ceramic engineering and science proceedings (Eds) Bansal NP, Wereszczak A, Lara-Curzio E. 2006;https://doi.org/10.1002/9780470291337.ch8.
  • 20. Zhou D, Guillon O, Vasen R. Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings. 2017;7:120. https://doi.org/10.3390/coatings7080120.
  • 21. Sokołowski P, Bjorklund S, Musalek R, Candidato RT Jr, Pawłowski L, Nait-Ali B, Smith D. Thermophysical properties of YSZ and YCeSZ suspension plasma sprayed coatings having different microstructures. Surf Coat Technol. 2017;318:28-38. https://doi.org/10.1016/j.surfcoat.2017.02.054.
  • 22. Tarasi F, Alebrahim E, Dolatabadi A, Moreau C. A comparative study of YSZ suspensions and coatings. Coatings. 2019;9:188. https://doi.org/10.3390/coatings9030188.
  • 23. Ekberg J. Investigation of microstructure and porosity of columnar yttria-stabilized zirconia coatings produced by axial suspension plasma spraying, Chalmers University of Technology, Technical report no 114/2017, ISSN 1652-8891.
  • 24. Van Every K, Krane MJM, Trice RW, Wang H, Porter W, Besser M, Sordelet D, Ilavsky J, Almer J. Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol. 2011;20:817-28. https://doi.org/10.1007/s11666-011-9632-2.
  • 25. Łatka L, Cattinia A, Pawłowski L, Valette S, Pateyron B, Lecompte J-P, Kumar R, Denoirjean A. Thermal diffusivity and conductivity of yttria stabilized zirconia coatings obtained by suspension plasma spraying. Surf Coat Technol. 2012;208:87-91. https://doi.org/10.1016/j.surfcoat.2012.08.014.
  • 26. Ganvir A, Curry N, Markocsan N, Nylen P, Toma F-L. Comparative study of suspension plasma sprayed and suspension high velocity oxy -fuel sprayed YSZ thermal barrier coatings. Surf Coat Technol. 2015;268:70-6. https://doi.org/10.1016/j.surfcoat.2014.11.054.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3de0dd4b-95b8-4251-97dd-ee2688923563
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.