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Abstract. By choosing convenient test functions and using the method of doubling variables,
we prove the uniqueness of the solution to a nonlinear evolution dam problem in an arbitrary
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1. INTRODUCTION

Without loss of generality, we can assume that n = 2. Let 2 be a bounded domain in
R? with horizontal bottom and locally Lipschitz boundary 02 := I' which represents
a porous medium and let z = (x1,x2) be the generic point of Q. Let A, B and D be
real numbers such that B > A. The boundary I is divided into two parts such that
one part I'y = [A, B] x {D} is the impervious part and the other I'y is the pervious
part which is a nonempty relatively open subset of T' (see Figure 1). For a positive
real number 7', let @ = 2 x (0,7) be the space-time cylinder. Let a : R — R be
a continuous function satisfying for some positive constants a, § and p > 1,

VreR: aolrP <alr)r (1.1)
vreR: Ja(r)| < BlrfPt, (1.2)
Vri,reo ER ry £ g (a(ry) —a(ra))(ry —re) >0 (1.3)

and let h : (A, B) — R be a Lipschitz continuous function of the variable x; such that
for two positive constants h and h,

V1 € (A,B): h<h(x)<h. (1.4)

© 2022 Authors. Creative Commons CC-BY 4.0 5



6 Messaouda Ben Attia, Elmehdi Zaouche, and Mahmoud Bousselsal

Moreover, let go : 2 — R be a measurable function satisfying
0<go<1 ae. inQ. (1.5)

We are concerned with a flow of an incompressible fluid through  in a time interval
[0,T] in which the fluid is governed by the following nonlinear version

QxR? = R, (z,(r,s) — h(z1)a(s) (1.6)
of Darcy’s law. The pressure p and velocity v of the fluid are related by
v = —h(z1)a((p + 22)a,)-

Notice that if k& : (A, B) — R is a function such that z; — (k(z1))P~? fulfills the

conditions imposed on h,
0 0
M(z) = (0 k(x1)>

is the matrix permeability of the porous medium and a(r) = |r[P~2r, we obtain the
following form of nonlinear Darcy’s law which corresponds to the nonhomogeneous
p-Laplacian:

|M(2)V(p + 2) P2 M (2)V(p + 22) = (k(21))P " (P + 22), [P (P + 22)a, -

h(z1) a((p+22)zy)

Let ¢ € C21NC} be a nonnegative function defined in @ which represents the assigned
pressure on I's x (0,7) and let ¥ be the parabolic boundary defined by X1 U 3o, where
El = Fl X (O,T) and 22 = FQ X (O,T) = 23 UE4 with 23 = (FQ X (O,T)) n {QD > 0}
and ¥4 = (T2 x (0,T)) Nn{p = 0}.

T2

Fig. 1. A dam
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Under above mentioned assumptions, the fluid flow is governed by following
equations:

u>xe, 0<g<1 glu—29)=0 inQ,
h(z1)(a(ue,) — ga(1))e, +9: =0 inQ,
u=ao on Yo,

1.7
9(-0) = g0 in €, (1.7)
h(z1)(a(ug,) —ga(l))-v =0 on X,
h(z1)(a(uz,) —ga(l))-v <0 on Xy

starting from the mass conservation law, where v is the outward unit normal to the
boundary 99, ¢ = ¢ + x2, u = p + x2, g is the saturation of the fluid and (u,g)
is the solution in search. The strong formulation (1.7) leads to the following weak
formulation of the nonlinear heterogeneous evolution dam problem associated with
the initial data go:

Find (u,g) € LP(0,T; WHP(Q)) x L>°(Q) such that:
UZZ’Q, O§g§17 g(U*LEQ):OIHQ,
u=¢ on X,
[ b () - ga(0), + 6] dade 0
Q
+/90(517)5(3370) dr <0, VEeW'P(Q), £=0on 33,
Q
E>0on Xy, &(z,T) =0 for a.e. z € L

In [16], the author established the existence of a solution by means of regularization
for the evolution dam problem related to an incompressible fluid flow governed by
a generalized nonlinear Darcy’s law with Dirichlet boundary conditions on some part of
the boundary using the Tychonof! fixed point theorem. He proved in [17] the continuity
of solutions in ¢ for this problem. Also, an existence of a solution was obtained in [7]
by an approximation resulting from the compressible case.

For the homogeneous dam problem, the uniqueness of the solution has been
obtained in [8] and [16] by the method of doubling variables, respectively, for
linear and generalized nonlinear Darcy’s laws. For a heterogeneous rectangular
dam wet at the bottom and dry near to the top, the uniqueness for a lin-
ear evolution dam problem has been proved in [18], in both incompressible
and compressible flows, by an idea from [11] in the homogeneous case. When
a(r) = r, the uniqueness of the problem (1.8) in a rectangular porous medium
has been obtained in [23] and [24] by the method of doubling variables, respectively,
for incompressible and compressible flows. The technique of doubling variables is
inspired by S.N. Kruzhkov in [11] in order to obtain a L!-contraction property for
entropy solutions of hyperbolic problems. See [5,6,10,12,13,15,19-22] for some uses
of this technique. For the applications of the Kruzhkov method to stationary and
non-stationary free boundary problems, we refer to [2-4,8,9,16,23].



8 Messaouda Ben Attia, Elmehdi Zaouche, and Mahmoud Bousselsal

In this paper, we choose convenient test functions and use the method of doubling
variables to prove the uniqueness of the solution in a heterogeneous porous medium
for the evolution dam problem (1.8) which is associated with an incompressible fluid
governed by the nonlinear version (1.6) of Darcy’s law. Our techniques are based on
the uniqueness of solutions obtained in [16] and [23]. It should be noted that our
uniqueness result is new in the context of a nonlinear evolution dam problem in an
arbitrary heterogeneous bounded domain of R™ with n € {2,3}. In Section 2, we give
some properties of the solutions of (1.8) and in Section 3, we state and prove our
uniqueness theorem that the solution of the problem (1.8) associated with the initial
data gg is unique.

2. SOME PROPERTIES OF THE SOLUTIONS

In this section, we will give some properties of the solutions which are useful in proving
our main result.

Lemma 2.1 ([16]). Let v € W'P(Q) and F € W,u>°(R?) be functions satisfying

F(u — x9,v) € LP(0,T; Wl’p(Q)), F(¢ —x2,v) € Wl’p(Q)a

OF
F(z1,22) > 0 a.e. (21, 29) € R? and either a—(zl,zg) >0 a.e. (21,2) € R?
Z1

OF
or —(21,29) <0 a.e. (21,22) € R

821

Then, if (u, g) is a solution of (1.8) and & € D(Q x (0,T)), we have

/h(wl)(a(um) = 9a(1))(F(u = 2,v)8), + g(F(0,v)§), dwdt

Q

= /h(m)(a(u@) — 9a())(F(¢ = ©2,0)€) 2, + g(F(§ — 22, 0)8); dudt.
Q

In particular, if F(¢ — x2,v) =0 on s,

/h(xl)(a(uzz) = 9a(1))(F(u = 29,0)8)a, + g(F(0,0)8); drdt.
Q

The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let € >0 and k > 0 be real numbers and let £ € D(R? x (0,T)) such
that £ > 0 and £ =0 on X3. If (u, g) is a solution of (1.8), we have

/h(xl)a(um) (min (M, 1)5) dzdt = 0.

T2
Q
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Let us set
g1 :igﬁzl = (fgﬂFl) X (O,T),
02:53024:(1} X (O,T))ﬂ{cp>0}ﬁ{cp:0}

and let us assume throughout the rest of the paper that o1 and o9 are (1, q) polar sets
of @ (see [1]), where ¢ is the conjugate exponent of p. Since the empty set is the only
(1,q) polar set of Q in the case p > 3, then we can consider that p < 3.

We use a regularization by convolution with respect to the variables x2 and ¢ to
prove the following proposition.

Proposition 2.3. Let A € [0,1] and let £ € D(R? x (0,T)) such that £ >0 and £ =0
on X1 UX3. If (u, g) is a solution of (1.8), we have

/ {h(z1)(a(uz,) — a(1))ée, + (A = 9)" (h(@1)a(1)és, — &)} dadt < 0. (2.1)
Q

Proof. We apply Corollary 2.2 for k£ = 0 to get

/h(xl)a(umz)(min (u —6202 ) 1)§>z2 dxdt = 0. (2.2)

Q
On the other hand, we have

/h(xl)a(l)(min (“ :“ , 1)5)12 dwdt =0 (2.3)

Q

since min(*—*2,1)¢ = 0 on ¥ and (h(z1))s, = 0 a.e. in Q. Subtracting (2.3) from and
(2.2), we get

/h(zl)(a(um) - a(l))(min (u —exz , 1)5)302 dzdt = 0,

Q

which can be written as

o et - a)) (s, — 1) dude
QN{u—z2<e}

(2.4)
+ /min (“ 2 l)h(xl)(a(uzz) — a(1))&,, dudt = 0.
Q

€

By (1.3) and the fact that h(z1) > 0 a.e. in Q, the first integral of (2.4) is nonnegative,
then

/rnin (u ;xQ , l)h(xl)(a(um) —a(1))&, dxdt < 0. (2.5)
Q
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Letting € — 0 in (2.5), we obtain

/h(xl)(a(um) —a(1))&y, dedt <0, (2.6)
Q

and then (2.1) holds for A = 0. Also, the inequality (2.1) holds for A = 1 since 0 < g < 1
a.e. in @ and £ is a test function for (1.8),

/ {1 (aluny) — ga(1))esy + g6} dudt < 0. (2.7)
Q

Now, we will prove (2.1) for A € (0,1). Without loss of generality, we can assume that
d(supp(&), X1 U X3) := g9 > 0.

Let us set

A= (R*x (0,T)\Z1)UX3 U0y

and

Acy = {(z,t) € R? x (0,7)/d((z,t), 51 US3 Uoz) > %O}

We extend u (resp. g) on A\Q by x5 (resp. 1) and still denote by u (resp. g) this
function. Also, the function h can be extended to a Lipschitz function on R, still

denote by h. We use a regularization by convolution for a(u,,) and g with respect
€0

to the variables xzo and t, (a(us,))s = pe * a(tg,), g = pe * g where € € (0, %),

pe € D(R x (0,T)), supp(pe) C B(0,¢) is a regularizing sequence. We can use Fubini’s
theorem to write

/ () (a(ua))e — goa(1))en, + 9o} dadt
A,

— [{ [ (@) - g1, 2~y = 9)p-(y: ) dyds Pl ), deds

Ay Rx(0,T)

+ /{ / g(xlvm*yat*S)Ps(y,S)dyds}ftdxdt

Ay RX(0,T)

= / ey, s){ / h(z1)(a(uy,) — ga(l))(xz1, 22 —y,t — )&, da:dt} dyds
Rx(0,T) Aey

+ / ey, S){ / g(x1,x0 —y, t — 5)& dwdt} dyds.
Rx (0,1 Ay
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Then, if we make the change of variables z = x5 — y and 7 =t — s, we get

[ () (@) — gea(1))ee, + gete} o

_ / pe(9.9) / h(z1)(a(us) — ga(1)) (1, 2, 1)

B(0,¢) Aeg

x &z, 2+ y, T+ 5))- d:rldsz} dyds

+ / ps(y,s){/g(ml,z,t)(f(xl,z+y,7+s))7dfc1dzd7'}dyds

B(0,¢) Aep
= [ v / ha)a(u:) — ga(D) (1. 2.)
B(0,¢)

x (&(z1,24+y, 7+ 8)). dxldsz} dyds
+ / pe(y,s /g z1,2,t)(E(r1, 2+ y, T+ 8))r d:z:ldsz}dyds.
B(0,¢)

Observe that (z1,z,7) +— &(x1,2 + y,7 + s) is a nonnegative function in
D(R? x (0,T)) and vanishes on ¥; U X3 for all (y,s) € B(0,¢). Therefore, since
pe > 0, we deduce from (2.7) that

[ () (@t = a1 + 0.6} dedt <0,

which can be written as

/{h(fvl)((a(um))s*a(l))fm (A = ge) (h(z1)a(1)&r, — &) } dxdt < 0

since
/ h(z1)a(1)E,, dedt = / A dadt = 0.

Aeo ‘A"EO

Similarly, using (2.6), we arrive at
[ b (atun)). - (), dodt <o
Az,

Now, for any positive real number §, we set

Ks = min (%, 1)
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which satisfies K5 € L, |
parts formula, we obtain

(Ac)s Ksuy, Kot € LY (Ag,). By using the integration by

loc

/ [h(e1)(@ltsy))e — a(1))Eny + K5\ — g0) (h()a(1)e, — &)} dadt
—*/K(; -771 facz ft)d.ﬁdt

_ / () (altia))e — a(1))(K5€)a,

+ (A = ge) (M(x1)a(1)(K58) e, — (Ks&)i) } dadt

+ / h(z1)((a(ua,))e = a(1))((1 = K5)§)a, dudt

Ay

and since (2.6) and (2.7) remain valid, respectively, for Ks¢ and (1 — Kj)¢, it follows
that

/{h(xl)((a(uza))e* a(1))&r, + Ks(X = ge) (h(@1)a(1)a, — &)} dudt

—f/K(; (x1)a(1)és, — &) dzdt < 0.

Finally, we pass successively to the limit in (2.8) as § — 0 and then as ¢ — 0 and
using Lebesgue’s dominated convergence theorem, we obtain

/ {h(a) (@lus) — a(1))ny + (3 — ) (h(xn)a()es, — &)} dadt < 0,

and then (2.1) holds since u = x5, g = 1 a.e. in A\Q and ¢ is arbitrary. O

We use Corollary 2.2 and Proposition 2.3 and argue as in the proof
of [16, Lemma 5.2] to prove the following lemma:



Uniqueness of solution of a nonlinear evolution dam problem. . . 13

Lemma 2.4. Let x be a function of L>=°(Q) satisfying
0<x<1 and h(x)a(l)xs, —xt=0 inD(Q).

Let £,&1,& € D(R? x (0,T)) such that £,&; >0, £ =& =0 on X1 U3, & =0 on 9Q
and let k, X\, e be nonnegative real numbers such that e > 0 and A € 1 — H(k) with
H denotes the mazimal monotone graph associated to the Heaviside function. Then,
if (u,g) is a solution of (1.8), we have

/ {h(xl)a(um) ( min (M, 1)5) .
Q

+ (A = 9) " (Az1)a(1)€1a, — E10)

+ (A= )" (hla1)a(V)ar, — 1) | dedt < Clusk,€1),

where

Clu,0,6) = / h(@)(a(t,) — a(1)érs, dudt

=lim [ h(z1)(a(ug,) — a(l))(min (u —6962 ) 1))@51 dadt, (2.9)

e—0

Q
C(u,k,&) =0 fork>0.

We use Lemma 2.1 and employ the regularization by convolution with respect to
the variables x5 and ¢ as in the proof of Proposition 2.3. We obtain by an argument
similar to that in the proof of [16, Lemma 5.3] the following result:

Lemma 2.5. Let us assume that (0,h(x1)a(1)).v <0 onT'y. Let U be a function of
C>(R) N CYY(R) such that ¥(0) = 0, ¥’ >0, ¥ < 1 and let k,\, e be the nonneg-
ative real numbers defined in Lemma 2.4. Then, if (u,g) is a solution of (1.8) and
E€DR? % (0,7)), >0, (1 —V¥(u—122))E =0 on Xo, we have

/ {h(m)(a(umz) - )\a(l))(min (w

€
Q

1)1 = w(u = 22))¢)

Z2

(9= N (hlwD)a(s, — &) | dadt > 0.
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3. UNIQUENESS OF SOLUTION

In this section we state and prove our uniqueness theorem.

Theorem 3.1. Assume that (1.1)—(1.5) and (0, h(z1)a(1)).r <0 on Ty hold. Then,
the solution of the problem (1.8) associated with the initial data go is unique.

We seek to obtain a comparison result for solutions which allows us to prove the
uniqueness of the solution of the problem (1.8). First, we begin with the following two
comparison lemmas of solutions.

Lemma 3.2. Let B be a bounded open subset of R? such that either BNT =0
or BNT is a Lipschitz graph. For two solutions (u1,g1) and (uz,g2) to (1.8), we
set Uy, = min(uj,us) and gy = max(g1,92). Then, for all £ € DB x (0,T)),
€20, supp(§) N (X1 UX3) =0 and for i = 1,2, we have

/{h(ml)(a(umz) - a(umwz) - (gi - gM)CL(l))wa + (gi - gM)ft} drdt < 0. (31)
Q

Proof. Let (u1,g1) and (ug, g2) be two solutions of (1.8) and let £ be the function
defined in Lemma 3.2. We define

V(z,t,y,s) €Q xQ:

Tty t+s t—s T1— Y T2 — Y2
o = ) (5 o (P s (252).
C(z,t,y,s) =¢ 5 9 P1,5, 9 P2,51 D) 3,62 B)

where 61, 02 are positive real numbers, p1s,, p2.5,, 03,6, € P(R), p1.5,, p2.61, P3,6, > 0

in R,
[ sty = [ pas, @yt = [ pasyae=1.
R R R
supp(p1,s,); supp(p2,s,) C (=61,61), supp(pss,) C (—d2,d2)
and o -y 0 — 1y
1— Y 2= Y2\ _
V(r,y) € (BNQ) x (B\Y), o, (5 o (B52) =0,
Notice that, by choosing é; and d2 small enough, ¢ € D(B x (0,7) x B x (0,7)) and

(=0 on (Z1U%3) xQ)U(QxX). (3.2)
So, applying Lemma 2.4 to (u1,¢g1) with
k:u2(y,s) — Y2, )‘:92(y78)a E(iL’,t) :gl(x,t) :C(Z,tvya S)

and &»(z,t) = 0, we obtain for a.e. (y,s) € Q,
+

/{h(xl)a(um)(min ((m — +€y2 — ug) 71)5)“

Q

+ (92 — 91) (M(21)a(1)Cay — Ct)} drdt < C(uy,uz — yo,()
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and integrating over @), we get

/ {h(Il)a(ulm)(min ((U1 ety ) ’ 1>£)x2

€

QX (3.3)
+ (92 — 91) " (h(z1)a(1)Ce, — Ct)} dzdtdyds < /C(umm — Y2, () dyds.
Q
On the other hand, applying Lemma 2.5 to (usg,g2) with
k:ul(x7t)_x23 A:gl(xvt)v g(yvs) :C(‘ratvyvs)
and ¥ = 0, we have for a.e. (z,t) € Q,
o (ur — 2o —up +yo)t
[ () atuz) — graa) (i (=222 1))
€ Y2
@ (3.4)

~ (92— 9)" (h(n)a(1)Gy, &) } dyds > 0.

Using (3.2) and the fact that the function (y,s) — h(y1)g1a(1) does not depend on
Y2, we find

/h(yl)gla(l)(min ((ul 2 _EuQ + )" , 1)C)y2 dyds = 0,
Q

therefore, (3.4) can be written as

/ {h(yl)a(u2y2)(min ((u1 — 2 —Euz )t 1)C)y
J v
~ (92 = 90) " (h(y)a(1)G, — ) | dyds > 0.
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By integrating over @), we obtain

[ b (o (=

€
@xQ (3.5)

— (g2 — 91)+(h(y1)a(1)Cy2 — Ct)} dxdtdyds > 0.

Since

min(wl_w2 _€u2+y2)+,1)C=0 on (X xQ)U(QxX)

and the functions h(z1) and uy (resp. h(y1) and us) do not depend on ys (resp. x2),
we have

/ A1 )a(ur,,) (min ((“1 — ot )’ 1)c)y drdidyds =0,  (3.6)

QxQ
o — +
/ h(yl)a(uzyz)(min<(u1 T2 — Uz + o) 1)Q) dudtdyds =0, (37)
€ T2
QxQ
Uggy = Uty, =0 a.e.in Q. (3.8)

Subtracting (3.5) from and (3.3) and using (3.6)—(3.8), we get

/ {[1(@)a((0r, + 0 )ur) = h(y1)al(Or, + 0,)u2)]
QxQ

(uy — 2 +6y2 —U2)+’1)<)

X (Op, + Oy,) (min (
+ (g2 = 1) [(r(@1) Gz + h(y1)a)a(1) = G = ¢ | dudtdyds

< / Clur,uz — ya, ) dyds,
Q
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which leads to

/ (h(21) = B(50))a((Day + By, )12) (B + )
QxXQ

_ o\t
% min ((Ul To + Y2 — u2) 1
€

) dedtdyds

b [ {0 (s + By Jun) = al(@r, + 9y )u2)) O, + 0,6
QxQ
+

Xmin((ul—$2+y2—u2) ’1)
€

+ (92 = 91 [A)a(D) (Gas + ) = G — C] } dadtdyds

(3.9)
+ / (92 — 1) (h(z1) — h(yr))a(1)Ce, didtdyds

QxXQ
+ / (h(a1) — h(n))a( By + By, Jun)C

QxXQ

X (0, + 0y,) (min ((“1 mma iy ua)t 1)) dudtdyds

€

L (U — T
+ / h(z1)(a(u1z,) — a(l))((mm ( ! p 2, 1))362 dzdtdyds
Qx(QN{uz2=y2})

< /C(UhUQ —y2,() dyds
Q

taking into account the conditions (1.3) and (1.4). Let us consider the following change
of variables:
T4y _t+s T —y t—s

= = . 1
2 ) T 2 ) 2 ) 0 2 (3 0)

Let J; and Jz denote, respectively, the domains of the variables zy = “2& and
oy = 25% and let I denote the domain of the variables x5 and y». Set
A—-B B-— A) o J ( T Z)
2 72 2 2°2)
A—-B B-A T T
, ) x I x (— —, —).
2 2 22

QIZ(A7B)XJ1X(O7T)7 Q2:(

Q3:(AaB)XIX(07T)a Q4:<
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Insert (3.10) in (3.9) yields
Desy.8, + Ee55,6, + Foz60 + Gepoa,0
+ / h(z1)(a(uiz,) — a(l))g‘(min ( , 1))z2 dxdtdyds
Qx(Qn{uz=y2}) (3.11)
< /C(ul,uQ — Y2, () dyds,
Q

Uy — T2

where

Diesyss = / (h(z1 + 01) — h(z1 — 01))aliize, ey
Q1XQ2
(ﬁl — ’[),2 — 202)+

X min ( , 1) dzdrdodb,
€

~

Bosa = [ {har+ o)aline) - alin)ie,
Q1XQ2

(’0,1 — 122 — 20’2)+ 1)

xmin(
€

(g2 —a)" (h(z1 —oa(1)Cs, — éT) } dzdrdodo,

F52,51 = / (§2_§1)+(h(21+0'1)—h(21—0’1))
Q3XQa

x a(1)Cp, dzidzodrdo, dyd,

Grsosr = / (h(z1 + 01) — Bzt — 01))alfins, )
Q1XQ2

x (min ((f“ — Gy — 203)" 1)) dzdrdodd

€

with

~

1 =u(z+o0,7+0), dz=wuz(z—0,7—0),

2
C=&(2,7)p1.6,(0)p2.s, (01)p3.6,(02), 61 = g1(z + 0,7 +0),
g2 =g2(z—o0,7—0), U =ui(z +o01,22,7+0),
g1 =g1(z1 + o1, 22,7+ 0), Go=g2(z1 —01,y2, 7 —0),

s T2 + Y2 $2—y2>
C=¢(=. 25 =)

77) p1.6,(0)p2,5,(01)p3.6, (
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Since h is a Lipschitz continuous function and supp(pas,) C (—d1,01), there exists
a constant K such that

|F52,51| <K / |Ul|(§2 - gl)+a(1)|§”£2 | dzidzadrdoydy2dd
Q3XQ4q
S K(Sl / (gg — §1)+a(1)|§w2|ledl‘Qde(TlddeG
Qs X Q4
= 6W5, 5., (3.12)

\GMMJﬁlwli/ %mhﬁ(mm(@y_%_2@w)ﬂ)n

€
Q1XQ2
= 6 W2s, 5, (3.13)

N . Uy — Qg — 209)T A
|D€752751| < Ko / ’a(UQZz)mln(( L 2 2) 71><z2

€

Cdzdrdodd

dzdrdodf

=6 W2s, 5, (3.14)

Notice that, (Wy, 5 )s,>0, (W25, 5,)6>0 and (W25, 5 )5,>0 are bounded, then, passing

€

to the limit in (3.12)—(3.14) as 6; — 0, we obtain

li

m
61—0

(Fsy6,) = 5111510(@,62,61) = 611@0(1?6,62,51) =0. (3.15)

On the other hand,

d2—0 91 —0 €

iy (i (Fe,00) = [ {Ae1)(at01.2) — a(ue,))ges min (P25 1)
Q

(3.16)
+ (g2 = 1) (h(z)a()ée, — &) | dzdr,

where uy = ul(zaT)7 Uz = UQ(Z,T)a g1 = 91(277—)3 g2 = 92(277—) and 5 = 5(2,7'). NOW’
since, by (2.9) and the Lebesgue theorem, we have

/C’(ul,UQ — yo,() dyds
Q

=l / {/hmnmmug—au»

Qn{uz=y2} Q
X g(rnnl(gliif?,1)) dxdt}dyd&
T2

€
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we obtain by letting successively 6; — 0, do — 0, ¢ — 0 in (3.11) and using
(3.15)(3.16),

/umﬁﬁwmmmm»ﬂmmm@
Q

+ (92 — 91) T (M(z1)a(1)Ez, — &)} dzdr <0,

where Xy, —u,>0} denotes the characteristic function of the set {u; —up > 0}. This
leads to (3.1) for ¢ = 1. If one exchanges the roles of (uj,g1) and (ug,gs), one also
obtains (3.1) for ¢ = 2. O

Lemma 3.3. Let B be a bounded open subset of R? such that either BNT =0 or
BNT is a Lipschitz graph. Let (u1,g1) and (ug, g2) be two solutions of (1.8) and let §
be a function of L*=°(Q) such that

0<7<g1,92 ae inQ, h(x)a(l)g,, —g, =0 in D'(Q). (3.17)
Then, for all &€ € DB x (0,T7)), & > 0, supp(§) N (o1 U Xy) = 0 and for
1,j =1,2, 1 # j, we have

[ Al @lias) = aluns) (9= 9 a(D)ée, + (95 = 9) € b dedt <0 (3.9
Q

Proof. Let (u1,91) and (usz,g2) be two solutions of (1.8) and let £ be the function
defined in Lemma 3.3. We define

V(r,t,y,5) €Q xQ:

ot ) =€ (5 5 o (5 o (M5 s (P52
y U, Y, - 2 ' 9 £1,61 9 £2,55 9 P3,63 9 )

where 01, 02, d3 are positive real numbers, p1,5,, p2.65, P3.55 € D(R), p1,515 P2.525
p3.5; > 0in R,

/mm@ﬁ:/mm@ﬁ:/%mwﬁ:L
R R R

supp(p1,6,) C (—01,61), supp(pz,s,) C (—02,02), supp(ps,s;) C (—I3,03)

and

V(z,y) € BNQ) x (B\Q): P2,52(x1 ;y1>p3,53(m ;y2> _o.

For 41, d2 and d3 small enough, we have ¢ € D(B x (0,7) x B x (0,T)) and
(=0 on (ZxQ)U(Q X (01 UXy)).

On the other hand, since supp(€)N(o1NX4) = 0 and if we suppose that supp(£)NXg # 0,

we can find ro € (0, min <p> and ¥ € C*°(R)NC%(R) such that ¥ >0, ¥(r) =0
supp(§)NZ3
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if r <0and ¥(r) =1if r > rg, and this function ¥ satisfies for d;, d2 and 3 small
enough,

(1-T(uz —12))C=0 on (£xQ)U(Q x ). (3.19)

If supp(§) N X3 = (), we choose ¥ = 0. Now, applying Lemma 2.4 to (u1,g1) with

k= u2(y75) — Y2, A= gQ(yvs)a g(l'vt) = 52(xat) = C(xvtvyvs)a f1($,t) =0 and X =9,
we obtain for a.e. (y,s) € Q,

[ {2t )
Q

+ (92 = )t (h(a1)a()Ce, — ) f dadt <0

and integrating over @, we get

/ {h(m)a(uug)(min ((U1 —Catin ) ’ 1)<>m2

€
xQ (3.20)

+ (g2 — 9)F (h(z1)a(1)Co, — gt)} dadtdyds < 0.

Similarly, for a.e. (z,t) € @, we apply Lemma 2.5 to (uz,g2) with k = uy(x,t) — xa,
A=7g(z,t), £(y, s) = ((z,t,y, s), then we integrate over @ to obtain

- / { () [a(uay,) — Fo(1)]

QxQ

X (min ((ul — o2ty —w)? , 1)(1 — W(up — yz))()

€

(3.21)

Y2

— (g5 — ) (h(y1)a(1)Cy, — gs)} dadtdyds < 0.

On the other hand, by Corollary 2.2, we have

/ h(x1)a(U1x2)(min ((ul — tyQ —ue)” , 1> ()I dxdtdyds = 0 (3.22)
QxQ
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and the use of (3.17) and (3.19) leads to

/ ghiy)a(1)

QxQ
X (min <(u1 — w2ty )" ) 1)(1 — U(uy — y2))<)

| hwmatuay,) 6

QxQ

dzxdtdyds =0, (3.23)
2

x

(ug — o +y2 —u2)™®

: ) (1= Wz~ 2)C)
Addition of (3.20), (3.21), (3.22), (3.23) and (3.24) yields

x (min dwdtdyds = 0. (3.24)

xT

Ke 5, ,65,60 + Lsy 65,60 + Me s, 558, <0, (3.25)
where
Kesisni = | { [baa(uns,) = hon)a(us,,)]
QxQ )+
. (ur — @2 +y2 —ug
X (awz—l—@w)(mm( . ,1)()
+ (g2 = ) ((Cos + Cu)hly)a(1) = G = ¢, ) } dadtdyds,
Livssss = [ (02~ 9" (blar) = hlu))al1)G, dodtdyds,
QxQ
M€,51,53,52 = / h(yl) [a((8I2 + 8yz)U2) —ﬁa(l)]
QxQ

X (O, + 8y2)(min ((ul i +€yz —ua)” , 1)

X W (uy — y2)<) dadtdyds

_ / h(z1)[a((Dz, + By, )ur) — ga(l)]
QxQ .
X (8932 + a’l}g)(mll’l ((U1 — T2 + Y2 — U’Q)

€

: 1) g) dedtdyds

- / ga(D)(h(z1) — h(y))
QxXQ

X (O, + 3y2)<min ((ul — tyZ —u)” , 1)() dxdtdyds.
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Passing to the limit in Ls, 54,5, as do — 0, we arrive at
lim (L(gl,g?’,gz) = 0. (326)
52—)0

On the other hand,

lim ( lim (Me,51,53752))

53—)0 52—)

// z1)[a(uoe,) — ga(l)] (mln <(u1 —up)” , 1)\11(7@ - m)f) R dxdtds

€

T

—u)t
//h (z1) [a(u1z,) — ga(1)] (mm (M7 1)5) p1,5, dxzdtds =: S¢ 5.,
0 Q

€
(3.27)
where
_ t+s
U]_:’U1<.'I},t), UQ:’ILQ(Z’,S), g:g(l',t), Ezg(.’ﬂ, 2 )
and p15, = p1,5,(152). Applying Lemma 2.1 to
EEPURTS
Fler,z0) = min (20 1)1 - w(ay)
€
with v = us — 22 and taking into account
(1 —T(ug(x,s) —x ))§<aj H—S) (75_—8)—0
2\, 2 ' £1,6, 5 =
for all (z,t,s) € £ x (0,T), we get
T
[ [ #anfatas) - ga(v)
0 e (3.28)

X (min (7@1 _ u2)+

,1)(1 — U(ug — 1:2))5) p1,5, dxdtds = 0.
€ T2
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Using (3.28) and the fact that § < g1 and ¥(0) = 0, we obtain from (3.27),

Se.s, Z/T/h(xl)[a(um) — g2a(1)]
0 Q

, 1)\I'(u2 — x2)£>T p1,6, dzdtds

(3.29)

X (min (M, 1)\I!(u2 - wg)f) zzpl’él dxdtds.

Notice that
:I:(min (—(ul — 0(@,9)" ) 1) — min ((gb(amt) — 9(@,8)" : 1))\I!(¢(x, s) — x2)Ep1 .5,

€ €

are test functions for (1.8) corresponding to (uz, g2). In addition, applying Lemma 2.1
to ug with v = uy — a9,

F(z1,22) = min (M 1)(1 —W(z))
and
F(z1,22) = min (M, 1),
subtracting one equation from the other and taking into account ¥(0) = 0,

92(ua — x2) =0 a.e. in @, we deduce that

// z1)[a(uze,) — g2a(1)] (mln ((u1 —u2)” , 1)\If(uQ - mz)f)xzm,al dzdtds

J €
= /T/h(m){[a(uzzz) - 92‘1(1)]
0 Q

X (min ((¢(x, t) — ¢l 5)" ; 1)‘IJ(¢(37) s) — 352)5) x2p1’61

€

((d’(xv t) — ¢(:Ca 5))+

€

+g2(min )W (D(a,s) —w2)6prs, )| dadtds.

(3.30)
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Similarly, if we apply Lemma 2.1 to u; with v = us — x5 and

F(z1,22) = min (M, 1)\11(22),

we get
T
//h(xl)[a(ulg;z) - gra(1)]
0 Q
X (min (M, 1)\IJ(U2 - xg)ﬁ)mpwl dxdtds
T
://h(xl){[a(um)—gla(l)] (3.31)
0 Q

(i (LD =N Vg o(0,5) — a0)e) pu,

€ x2

((d)(xa t) — QZ)(.I, 5))+

+ g1 (min
€

, 1)\II(¢($, s) — z2)§p1751)t} dxdtds.

Since g1 (resp. g2) does not depend on s (resp. t), we obtain from (3.29), (3.30)
and (3.31),

T T
&mZ!!Z&W@WWM—MMM+@—WWM

X (min (((b(x,t) — ¢, ) ) 1>‘I’(¢($7 s) — 952)5)

€ 2o (3.32)
1 g0+ 0) (i (A2 9"
X U(p(x,s) — 9:2)5) }plv(;ldxdtds.
We may then pass to the limit in (3.32) as 6; — 0 to deduce
5111210(513113)10(5121§0(M5’51753752)) = 5111510(5}751) =0. (3.33)
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Thus, for K. s, s,.5,, we use (1.3) and (1.4) to write

Kesisoss = [ {Ho1)(0u12,) = o(u2,0)) 0 +010)¢
QxQ

up — T +y2 —ug)" 1)

xmin(( c

+ (92 = 9)" (Cas + Gl )a(1) = G = ¢, ) | dadtdyds

+ / {h(ml)(a(uu@) — a(uay,))¢
QxQ
< (O + 0, min
. / {(he1) = hln))auay,)
QxQ
X (O, + ayQ)(min ((
> / {h(wl)(a(Um) — a(uzy, )0z, + 0y, )¢

QxQ

up — T2 + Y2 —ug) " 1
6 b

) } dedtdyds

up — X9 +y2 —u2)" 1
6 b

)c) } dedtdyds

(ur — 22 +y2 —ug)™ 1)

xmin(
€

+ (92 = 9 (Cas + Gl )a(1) = G = ¢, ) | dadtdyds

+ / {(h(:ﬂﬂ*h(yl))a(u%‘z)

QxQ

up — T +y2 —ug)" 1
bl
€

X (Og, + Oy,) ( min <( )C) } dxdtdyds.

Now, we pass successively to the limit as 63 — 0, d3 — 0, 1 — 0, ¢ — 0 to get

[ (sl fatun) = a6, + (02 = 9)" (hen)al1)Gs, - ) } dade
QxQ

< liminf( li li lim (K . .
< i ff( Y, i, (i (e 50.5,))))

(3.34)

Now, by letting successively do — 0, 63 — 0, 1 — 0, € — 0 in (3.25) and using (3.26),
(3.33) and (3.34), we obtain (3.18) for ¢ = 1 and j = 2. Since we can exchange the
roles of (u1,¢91) and (ug, g2), we can also obtain (3.18) for i = 2 and j = 1. O
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Proof of Theorem 3.1. Using Lemmas 3.2, 3.3 and applying arguments similar to
[16, Lemmas 5.6, 5.7 and Theorem 5.8], we arrive at the following comparison result
of solutions,

/ {h(z1)(a(tiz,) = a(tma,) = (9i — gar)a(1))&es + (9 — grr)ée } dadt <0,
) (3.35)
i=1,2,V¢e€DBx (0,T7)),£ >0, &(x,0)=&(x,T) =0 a.e. in Q.

If we choose £ € D(0,T'), £ > 0 in (3.35), we get
/(gi — gum)ée dadt <0,

Q

which can be written as

(9m —gi)dz <0 in D'(0,T).

SN
O

Since g; € C°([0,T]; LY()
we obtain

~—

(see [17]) and g1(x,0) = g2(z,0) = go(z) a.e. z € Q,

(gp —gi)dz =0 in [0,7],

O

which leads to
g1=92=g9gn a.. in Q. (3.36)
Insert (3.36) in (3.35) yields

VEe D x (0,T)),£>0: /h(:ﬂl)(a(uim) — a(Umas ))&, dxdt < 0. (3.37)
Q

From (1.3)—(1.4) and the fact that (3.37) remains true for & = u; — uy,, we deduce
that (u; — Um)a, = 0 a.e. in Q. Since u; — u,,, = 0 on 3o, we can extend u; — Uy, to
Rx (D, 4+00) % (0,T) by 0 and still denote by w; —u,,. Thus, for a.e. (z1,t) € Rx (0,7,
there exists w € C°([D, +00)) such that w(z2) = (u; —um ) (21, 22,t) a.e. 13 € (D, +00)
and
21
Vz1,22 € [Dv +OO) : w(zl) - w(ZQ) = /(uz - Um)zz (xlv Z7t) dz =0,

z2

which means that w = ¢ in [D, +00) for some constant ¢ > 0. Due to w(zz) = 0 for xo
large enough, it follows that w = 0 in [D, +00), and hence u; = u,, a.e. in Q for i = 1,2.
Thus, the proof is complete. O

Remark 3.4. If F, F are real numbers such that FF > E, n = 3 and
I'1 = [A,B] x [E, F], the obtained uniqueness result remains true if we replace
z1 by y' = (y1,y2) € [A, B] x [E, F] and z2 by y3, where y = (y',y3) = (y1,2,y3) is
a generic point of  C R3.
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