PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Density Fields of Numerical Analysis Output of Solid Carbon Dioxide Extrusion Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efforts to reduce energy consumption and explore alternative energy sources are paramount in production process research. However, a research gap exists regarding the evaluation of density fields in numerical analysis output of solid carbon dioxide (CO2) extrusion. This study aims to address this gap by examining the density fields in the numerical analysis output of the extrusion process for solid CO2, commonly known as dry ice. Dry ice, a by-product of ammonia compounds production, requires efficient management due to its high sublimation rate. Ram pressing is a commonly used method for compressing dry ice, but the resulting product often exhibits non-uniform density fields, presenting challenges for process optimization. To bridge this research gap, an algorithm is verified for determining the percentage share of density fields in the numerical simulation results. By comparing simulations using single- and multiple-cavity dies, the algorithm provides valuable insights into the distribution of density within the extruded solid CO2. In overcoming the limitations of subjective comparative evaluation, this study offers objective measures for assessing and comparing numerical analysis outputs. The findings contribute to a deeper understanding and optimization of the solid CO2 extrusion process, facilitating the production of high-density dry ice products with reduced energy consumption. In conclusion, this research not only bridges the research gap in evaluating density fields but also advances the field of solid CO2 extrusion and waste materials management.
Słowa kluczowe
Twórcy
autor
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Gawrońska, E., Dyja, R., Zych, M., Domek, G. Selection of the Heat Transfer Coefficient Using Swarming Algorithms. Acta Mech. Et Autom. 2022; 16(4): 325–339. https://doi.org/10.2478/ ama-2022-0039
  • 2. Gierz, Ł., Warguła, Ł., Kukla, M., Koszela, K., Zawiachel, T. Computer Aided Modeling of Wood Chips Transport by Means of a Belt Conveyor with Use of Discrete Element Method. Appl. Sci. 2020; 10(24). https://doi.org/10.3390/app10249091
  • 3. Markowski, J., Pielecha, I. The potential of fuel cells as a drive source of maritime transport, IOP Conference Series: Earth and Environmental Science. 2019; 214. DOI: http://dx.doi. org/10.1088/1755-1315/214/1/012019
  • 4. Wilczyński, D., Talaśka, K., Wojtokwiak, D., Wałęsa, K., Wojciechowski S. Selection of the Electric Drive for the Wood Waste Compacting Unit. Energies. 2022; 15(20). DOI: http://dx.doi. org/10.3390/en15207488
  • 5. Omer, O., Alireza K. Alternative Energy in Power Electronics: Chapter 2 Energy in Power Electronics, Butterworth-Heinemann. 2015; 81–154. https://doi. org/10.1016/B978-0-12-416714-8.00002-0
  • 6. Jesionek, K., Wieczorkiewicz, G., Rychlik M., Riczak, R., Markowski, J., Nowacki M., Olejniczak, D., Wasiński K. Problems of Plastic Recycling in the Aspect of the Applications of Energy Methods. Journal of Engineering Science and Technology Review. 2020; 176–279.
  • 7. Tahmasebi, M.M., Banihashemi, S., Hassanabadi, M.S. Assesment of the Variation Impacts og Windwos on Energy Consumption and Carbon Footprint, Procedua Engineering. 2011; 21: 820–828. https:// doi.org/10.1016/j.proeng.2011.11.2083
  • 8. Bydełek, A., Berdychowski, M., Talaśka, K. Modeling of Material Characteristics of Conventional Synthetic Fabrics, Autex Research Journal. 2022; 2. https://doi.org/10.2478/aut-2022-0002
  • 9. Raza, S., Ahmad, J. Composting process: a review. International Journal of Biological Research. 2016; 4(2): 102–104. https://doi.org/10.14419/ijbr. v4i2.6354
  • 10. Lohri, C., Rajabu, H., Sweeney, D., Zurbrügg, C. Char fuel production in developing countries – A review of urban biowaste carbonization. Renewable and Sustainable Energy Reviews. 2016; 59: 1514– 1530. https://doi.org/10.1016/j.rser.2016.01.088
  • 11. Wilczyński, D., Berdychowski, M., Talaśka, K., Wojtkowiak, D. Experimental and numerical anal- ysis of the effect of compaction conditions on briquette properties. Fuel. 2021; 288: 119613. https:// doi.org/10.1016/j.fuel.2020.119613
  • 12. Uhryński, A., Bembenek, M. The Thermographic Analysis of the Agglomeration Process in the Roller Press of Pillow-Shaped Briquettes. Materials. 2022; 15(8): 2870. https://doi.org/10.3390/ma15082870
  • 13. Mani, S., Tabil, L., Sakhansanj, S. Specific Energy requirement for compacting corn stover. Bioresource Technology. 2006; 97(12): 1420–1426. https://doi.org/10.1016/j.biortech.2005.06.019
  • 14. Pasciucco, F., Francini, G., Pecorini, I., Baccioli A., Lombardi, L., Ferrari, L. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. Journal of Cleaner Production. 2023; 401: 136762. https://doi. org/10.1016/j.jclepro.2023.136762
  • 15. Bicer, Y., Dincer, I., Vezina, G., Raso, F. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes, Environmental Management. 2017; 59: 842–855. https://doi. org/10.1007/s00267-017-0831-6
  • 16. Dzido, A., Krawczyk, P., Badyda, K., Chondrokostas, P. Operational characteristics impact on the performance of dry-ice blasting nozzle. Energy. 2021; 214: 118847. https://doi.org/10.1016/j. energy.2020.118847
  • 17. Witte, A.K., Bobal, M., David, R., Blättler, B., Schoder, D., Rossmanith, P. Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment. LWT. 2017; 75: 735–741. https://doi.org/10.1016/j. lwt.2016.10.024
  • 18. Spur, G., Uhlman, E., Elbing, F. Dry-ice blasting for cleaning: process, optimization and application, Wear. 1999; 233–235: 402–411. https://doi. org/10.1016/S0043-1648(99)00204-5
  • 19. Liu, Y.H., Matsusaka, S.L. Formation of Dry Ice Particles and Their Application to Surface Cleaning. Earozoru Kenkyu. 2013; 28: 155–162. https://doi. org/10.11203/jar.28.155
  • 20. Górecki, J., Talaśka, K., Wałęsa, K., Wilczyński, D., Wojtkowiak, D. Mathematical model describing the influence of geometrical characteristics of multichannel dies on the limit force of dry ice extrusion process. Materials. 2020; 13(15): 3317. https://doi. org/10.3390/ma13153317
  • 21. Górecki, J., Wałęsa, K., Biszczanik, A. Determination of the density of solid carbon dioxide using the hydrostatic method. AIP Conference Proceedings, 2023.
  • 22. Berdychowski, M., Górecki, J., Biszczanik, A., Wałęsa, K. Numerical Simulation of Dry Ice Compaction Process: Comparison of Drucker-Prager/ Cap and Cam Clay Models with Experimental Results. Materials. 2022; 15: 5771. https://doi.org/. https://doi.org/10.3390/ma15165771
  • 23. Górecki, J., Łykowski W. Influence of Die Land Length on the Maximum Extrusion Force and Dry Ice Pellets Density in Ram Extrusion Process. Materials. 2023; 16(12): 4281. https://doi.org/10.3390/ ma16124281
  • 24. Wałęsa, K., Górecki, J., Berdychowski, M., Biszczanik, A., Wojtkowiak, D. Modelling of the Process of Extrusion of Dry Ice through a Single-Hole Die Using the Smoothed Particle Hydrodynamics (SPH) Method. Materials. 2022; 15(22). http://dx.doi. org/10.3390/ma15228242
  • 25. Berdychowski, M., Górecki, J., Wałęsa, K. Numerical Simulation of Dry Ice Compaction Process: Comparison of the Mohr–Coulomb Model with the Experimental Results. Materials. 2022; 15(22): 7932. https://doi.org/10.3390/ma15227932
  • 26. Tiernan, P., Hillery, M.T., Draganescu, B., Gheorghe M. Modelling of cold extrusion with experimental verification. Journal of Materials Processing Technology. 2005; 168(2): 360–366. https://doi. org/10.1016/j.jmatprotec.2005.02.249
  • 27. Biszczanik, A., Wojtkowiak, D., Wałęsa, K. Influ- ence of the geometric characteristics of convergent extrusion channel of die on the maximum value of compaction stress of dry ice and on the quality of the obtained pellets. AIP Conference Proceedings, 2023, (submitted; accepted; in press).
  • 28. Georgieva, L., Dimitrova, T., Angelov, N. RGB and HSV colour models in colour identification of digital traumas images, International conferences on computer systems and technologies, 2005, 12(1).
  • 29. Hema, D.M., Kannan, D.S. Interactive color image segmentation using HSV color space. Science and Technology Journal. 2029; 7(1). http://doi. org/10.22232/stj.2019.07.01.05
  • 30. Smith, R. An Overview of the Tesseract OCR Engine. Ninth International Conference on Document Analysis and Recognition. 2007; 2: 629–633. DOI: https://doi.org/10.1109/ICDAR.2007.4376991
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dd4993d-63da-4b6e-85cd-05e1da4efd13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.