Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fine and coarse recycled aggregate used jointly as partial replacement of natural aggregate is not allowed for structural concrete in many international standards. More studies about it are needed toward more ecofriendly standards. This research studies one important aspect for structural concrete: the influence of recycled aggregate on the accuracy of the maturity method. A total of 7 mixes were studied with two types of reference concretes: vibrated (VC) and self-compacting concrete (SSC). For vibrated concrete, we studied 4 mixes with different partial replacements of recycled aggregates: 0%, 8%, 20% and 31%. For self-compacting concrete, the partial replacements were 0%, 20% and 50% of the total amount of aggregates. We found that, for percentages equal or higher than 20%, the higher is the percentage of recycled aggregate, the higher the activation energy. It was observed that a unique curve “Maturity–Relative strength (S/S∞)” can be used for each type of concrete (SSC or VC) independent of the percentage of recycled aggregate. In addition, we found higher accuracy of the estimations using the hyperbolic equation for the curve “Maturity–S/S∞” than using the exponential equation; applying the hyperbolic approach, less than 3% of the estimations had an error higher than 10%.
Czasopismo
Rocznik
Tom
Strony
311--321
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
autor
- Grupo de Construcción, Centro de Innovación Tecnológica en Edificación e Ingeniería Civil (CITEEC), E.T.S. Ingenieros de Caminos, Canales y Puertos. Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain
autor
- Grupo de Construcción, Centro de Innovación Tecnológica en Edificación e Ingeniería Civil (CITEEC), E.T.S. Ingenieros de Caminos, Canales y Puertos. Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain
Bibliografia
- [1] European Commission, EC COMMUNICATION: Roadmap to a Resource Efficient Europe, Eur. Comm. (2011) 32, COM(2011)571 final.
- [2] United Nations FCCC, Paris Agreement, in: 21st Conf. Parties, 2015, 3, FCCC/CP/2015/L.9/Rev.1.
- [3] M. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cem. Concr. Res. 37 (2007) 735–742. http://dx.doi.org/10.1016/j.cemconres.2007.02.002.
- [4] M. Velay-Lizancos, J.L. Perez-Ordoñez, I. Martinez-Lage, P. Vazquez-Burgo, Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature, Constr. Build. Mater. 144 (2017) 195–206. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.123.
- [5] P. Lastra-González, M.A. Calzada-Pérez, D. Castro-Fresno, I. Indacoechea-Vega, Asphalt mixtures with high rates of recycled aggregates and modified bitumen with rubber at reduced temperature, Road Mater. Pavement Des. (2017) 1–10. http://dx.doi.org/10.1080/14680629.2017.1307264.
- [6] K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder Rusing the response surface method, J. Clean. Prod. 144 (2017) 192–202. , http://dx.doi.org/10.1016/j.jclepro.2016.12.156.
- [7] S. Nunes, A.M. Matos, T. Duarte, H. Figueiras, J. Sousa-Coutinho, Mixture design of self-compacting glass mortar, Cem. Concr. Compos. 43 (2013) 1–11. http://dx.doi.org/10.1016/j.cemconcomp.2013.05.009.
- [8] A. Behnood, M. Modiri Gharehveran, F. Gozali Asl, M. Ameri, Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash, Constr. Build. Mater. 96 (2015), http://dx.doi.org/10.1016/j.conbuildmat.2015.08.021.
- [9] G. Xu, Q. Tian, J. Miao, J. Liu, Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures, Constr. Build. Mater. 149 (2017) 367–377. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.080.
- [10] M. Velay-Lizancos, M. Azenha, I. Martínez-Lage, P. Vázquez-Burgo, Addition of biomass ash in concrete: effects on EModulus, electrical conductivity at early ages and their correlation, Constr. Build. Mater. 157 (2017) 1126–1132. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.179.
- [11] A.R. Pasandín, I. Pérez, A. Ramírez, M.M. Cano, Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler, J. Clean. Prod. 112 (2016) 853–862. http://dx.doi.org/10.1016/j.jclepro.2015.06.016.
- [12] D. Movilla-Quesada, O. Muñoz, A.C. Raposeiras, D. Castro-Fresno, Thermal suspectability analysis of the reuse of fly ash from cellulose industry as contribution filler in bituminous mixtures, Constr. Build. Mater. 160 (2018) 268–277. http://dx.doi.org/10.1016/j.conbuildmat.2017.11.046.
- [13] M. Velay-lizancos, I. Martinez-Lage, M. Azenha, J. Granja, P. Vazquez-Burgo, Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages, Constr. Build. Mater. 193 (2018) 323–331. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.209.
- [14] P. Gonçalves, d. Brito, Recycled aggregate concrete (RAC)-comparative analysis of existing specifications, Mag. Concr. Res. 62 (2010) 339–346. http://dx.doi.org/10.1680/macr.2008.62.5.339.
- [15] V.W.Y. Tam, M. Soomro, A.C.J. Evangelista, A review of recycled aggregate in concrete applications (2000–2017), Constr. Build. Mater. 172 (2018) 272–292. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.240.
- [16] J. Pacheco-Torgal, F. Tam, V. Labrincha, J. Ding, Y. de Brito, Handbook of Recycled Concrete and Demolition Waste, Elsevier BV, 2013.
- [17] A. Rao, K.N. Jha, S. Misra, Use of aggregates from recycled construction and demolition waste in concrete, Resour. Conserv. Recycl. 50 (2007) 71–81. http://dx.doi.org/10.1016/j.resconrec.2006.05.010.
- [18] C. Zhou, Z. Chen, Mechanical properties of recycled concrete made with different types of coarse aggregate, Constr. Build. Mater. 134 (2017) 497–506. http://dx.doi.org/10.1016/j. conbuildmat.2016.12.163.
- [19] K.P. Verian, W. Ashraf, Y. Cao, Properties of recycled concrete aggregate and their influence in new concrete production, Resour. Conserv. Recycl. 133 (2018) 30–49. http://dx.doi.org/10.1016/j.resconrec.2018.02.005.
- [20] L. Evangelista, J. de Brito, Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cem. Concr. Compos. 29 (2007) 397–401. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.004.
- [21] M. Etxeberria, A.R. Marí, E. Vázquez, Recycled aggregate concrete as structural material, Mater. Struct. 40 (2007) 529–541. http://dx.doi.org/10.1617/s11527-006-9161-5.
- [22] M. Velay-Lizancos, P. Vazquez-Burgo, D. Restrepo, I. Martinez-Lage, Effect of fine and coarse recycled concrete aggregate on the mechanical behavior of precast reinforced beams: Comparison of FE simulations, theoretical, and experimental results on real scale beams, Constr, Build. Mater. 191 (2018) 1109–1119. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.075.
- [23] M. Velay-Lizancos, I. Martinez-Lage, M. Azenha, P. Vazquez-Burgo, Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials, Constr. Build. Mater. 124 (2016) 276–286. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.104.
- [24] V. Corinaldesi, G. Moriconi, Influence of mineral additions on the performance of 100% recycled aggregate concrete, Constr. Build. Mater. 23 (2009) 2869–2876. http://dx.doi.org/10.1016/j.conbuildmat.2009.02.004.
- [25] E.M. Golafshani, A. Behnood, Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete, J. Clean. Prod. 176 (2018) 1163–1176. http://dx.doi.org/10.1016/j.jclepro.2017.11.186.
- [26] A. Behnood, J. Olek, M.A. Glinicki, Predicting moduluj elasticity of recycled aggregate concrete using M50 model tree algorithm, Constr. Build. Mater. 94 (2015) 137–147. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.055.
- [27] V.M. Malhotra, N.J. Carino, Handbook on Nondestructive Testing of Concrete, 2004 http://www.crcpress.com/product/isbn/9780849314858.
- [28] N.J. Carino, R.C. Tank, Maturity functions for concretes made with various cements and admixtures, ACI Mater. J. 89 (1992).
- [29] A. Nykanen, Hardening of concrete at different temperatures, especially below the freezing point, in: Proc. RILEM Symp. Winter Concreting, Sess. BII, Copenhagen, 1956.
- [30] A.G.A. Saul, Principles underlying the steam curing of concrete at atmospheric pressure, Mag. Concr. Res. 2 (1951)127–140. http://dx.doi.org/10.1680/macr.1951.2.6.127.
- [31] E. Rastrup, Heat of hydration in concrete, Mag. Concr. Res. 6 (1954) 79–92. http://dx.doi.org/10.1680/macr.1954.6.17.79.
- [32] P.F. Hansen, E.J. Pedersen, Maturity computer for controlled curing and hardening of concrete, Nord. Betongfoerbundet. 1 (1977) 19–34.
- [33] C.F. Kee, Relation between strength and maturity of concrete, ACI J. 68 (1971) 196–203. http://dx.doi.org/10.14359/11320.
- [34] T.A. Yikici, H.-L. (Roger) Chen, Use of maturity method to estimate compressive strength of mass concrete, Constr. Build. Mater. 95 (2015) 802–812. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.026.
- [35] X.F. Li, Z. Fu, Z. Luo, S.L. Li, Concrete strength estimation using the maturity method, Adv. Mater. Res. 857 (2013) 35–41. http://dx.doi.org/10.4028/www.scientific.net/AMR.857.35.
- [36] S. Kamkar, Ö. Eren, Evaluation of maturity method for steel fiber reinforced concrete, KSCE J. Civ. Eng. 22 (2018) 213–221. http://dx.doi.org/10.1007/s12205-017-1761-9.
- [37] I. Galobardes, S.H. Cavalaro, C.I. Goodier, S. Austin, Á. Rueda, Maturity method to predict the evolution of the properties of sprayed concrete, Constr. Build. Mater. 79 (2015) 357–369. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.038.
- [38] J. Carette, S. Staquet, Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: Part I. Hydration and apparent activation energy, Cem. Concr. Compos. 73 (2016) 10–18. http://dx.doi.org/10.1016/j.cemconcomp.2016.07.002.
- [39] J. Akasaki, M. Moraes, C. Silva, C. Fioriti, M. Tashima, Assessment the maturity concept in concrete with the addition of rice husk ash, Rev. Ing. Constr. 31 (2016) 175–182. http://dx.doi.org/10.4067/S0718-50732016000300003.
- [40] ASTM Committee C09.64, ASTM C1074-11 Standard Practice for Estimating Concrete Strength by the Maturity Method, in: Annu. B. ASTM Stand., vol. 04.02, 2015, 10, http://dx.doi.org/10.1520/C1074-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dcfc48b-632a-412f-82b7-81561285321c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.