PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing Environmental Pollution in Kosovo’s Industrial Areas Using Plant Bioindicators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution is a global issue, and Kosovo is no exception, grappling with extensive mining activities. The research aims to assess the influence of industrial pollution in Drenas and Mitrovica using oxidative stress biomarkers (malondialdehyde–MDA, and the amount of glutathione transferase–GST) and biochemical indicators (total proteins) in three plant species (Achillea millefolium, Hypericum perforatum and Plantago lanceolata). Plants were collected within a one-kilometer radius around industrial complexes in Drenas and Mitrovica, with Peja serving as a control point. In the homogenate of plant leaves, total proteins were determined using the Lowry method, MDA levels were determined using the Health Packer method, and GST activity was assessed using Habig method. GST activity was higher in the three plant species collected in Drenas and Mitrovica compared to those in Peje, the control point. Apart from Hypericum perforatoum in Mitrovica, the study revealed a significant increase in MDA levels in the three plant species from industrial areas compared to those in the control point. Generally, plants collected in industrial areas exhibited lower total protein levels than those in Peja. A negative correlation was observed between MDA levels and total proteins of Achillea millefolium and Plantago lanceolata, but not in Hypericum perforatum. The findings underscore the impact of pollution on the three plant species investigated in the study.
Rocznik
Strony
155--162
Opis fizyczny
Bibliogr. 55 poz., tab.
Twórcy
  • Department of Biology, University of Prishtina Hasan Prishtina, Str. George Bush, No. 31, 10 000 Prishtina, Kosovo
  • Department of Biology, University of Prishtina Hasan Prishtina, Str. George Bush, No. 31, 10 000 Prishtina, Kosovo
autor
  • Department of Biology, University of Prishtina Hasan Prishtina, Str. George Bush, No. 31, 10 000 Prishtina, Kosovo
  • Faculty of Agriculture and Veterinary, University of Prishtina Hasan Prishtina, Str. George Bush, No. 31, 10 000, Prishtina, Kosovo
  • Faculty of Agribusiness, University Haxhi Zeka, Rr. UÇK. Pejë, 30000, Pejë Kosovo
  • Faculty of Agribusiness, University Haxhi Zeka, Rr. UÇK. Pejë, 30000, Pejë Kosovo
Bibliografia
  • 1. Aki C., & Yücel, G., 2019. Effects of some of heavy metals on total protein amount and peroxidase activity in Solanum lycopersicum Mill. Journal of Scientific Perspectives, 3, 371–378. https://doi.org/10.26900/jsp.3.037
  • 2. Al-Fartosy A., Awad, N., & Shanan, S., 2014. Biochemical correlation between some heavy metals, malondialdehyde and total antioxidant capacity in blood of gasoline station workers.
  • 3. Aralbaeva A.N., Mamataeva, A.T., Zhaparkulova, N.I., Utegalieva, R.S., Khanin, M., Danilenko, M., & Murzakhmetova, M.K., 2017. A composition of medicinal plants with an enhanced ability to suppress microsomal lipid peroxidation and a protective activity against carbon tetrachlorideinduced hepatotoxicity. Biomedicine & Pharmacotherapy, 96, 1283–1291. https://doi.org/10.1016/j. biopha.2017.11.085
  • 4. Azarakhsh M., Asrar, Z., & Mansuori, H., 2014. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. Journal of Soil Science and Plant Nutrition, 15. https://doi.org/10.4067/S0718-95162015005000044
  • 5. Benhamdi A., Kandouli, C., Cherfia, R., Chelouche, S., Boumissa, Z., Benniou, M.E., Hafdi, R., & Mechakra, A., 2021. Effect of zinc on the growth and the antioxidant system of lens culinaris cultivated on agar medium. Journal of Ecological Engineering, 22(9), 13–20. https://doi.org/10.12911/22998993/141532
  • 6. Buqaj L., Gashi, B., Zogaj, M., Vataj, R., Sota, V., & Tuna, M., 2023. Stress induced by soil contamination with heavy metals and their effects on some biomarkers and DNA damage in maize plants at the vicinity of Ferronikel smelter in Drenas, Kosovo. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 58(10), 617–627. https://doi.org/10.1080/0 3601234.2023.2253114
  • 7. Carbone D.L., Doorn, J.A., Kiebler, Z., & Petersen, D.R., 2005. Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase. Chemical Research in Toxicology, 18(8), 13241331. https://doi.org/10.1021/tx050078z
  • 8. Chaki M., Begara-Morales, J.C., & Barroso, J.B. 2020. Oxidative Stress in Plants. Antioxidants, 9(6), Article 6. https://doi.org/10.3390/antiox9060481
  • 9. Day L., 2013. Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology, 32(1), 25–42. https://doi.org/10.1016/j.tifs.2013.05.005
  • 10. Day P.R., 1996. The biology of plant proteins. Critical Reviews in Food Science and Nutrition, 36(sup001), 39–47. https://doi. org/10.1080/10408399609527758
  • 11. Demaku S., Aliu, A., Sylejmani, D., Ahmetaj, B., & Halili, J., 2023. Determination of heavy metals in bee honey as a bioindicator in the Istog, Drenas and Kastriot regions. Journal of Ecological Engineering, 24(5), 191–200. https:// doi.org/10.12911/22998993/161654
  • 12. Demidchik V., 2015. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021
  • 13. Duan Y., Sangani, C.B., Muddassir, M., & Soni, K.V., 2020. Copper, chromium and nickel heavy metal effects on total sugar and protein content in glycine max [Preprint]. https://doi.org/10.21203/ rs.3.rs-107829/v1
  • 14. Edwards R., Dixon, D.P., & Walbot, V., 2000. Plant glutathione S -transferases: Enzymes with multiple functions in sickness and in health. Trends in Plant Science, 5(5), 193–198. https://doi.org/10.1016/ S1360-1385(00)01601-0
  • 15. Gashi B., Osmani, M., Aliu, S., Zogaj, M., & Kastrati, F., 2020. Risk assessment of heavy metal toxicity by sensitive biomarker δ-aminolevulinic acid dehydratase (ALA-D) for onion plants cultivated in polluted areas in Kosovo. Journal of Environmental Science and Health, Part B, 55(5), 462–469. https:// doi.org/10.1080/03601234.2020.1721229
  • 16. Glavač N.K., Djogo, S., Ražić, S., Kreft, S., & Veber, M., 2017. Accumulation of heavy metals from soil in medicinal plants. Archives of Industrial Hygiene and Toxicology, 68(3), 236–244. https://doi.org/10.1515/aiht-2017-68-2990
  • 17. Grotto D., Maria, L.S., Valentini, J., Paniz, C., Schmitt, G., Garcia, S.C., Pomblum, V.J., Rocha, J.B.T., & Farina, M., 2009. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification. Química Nova, 32, 169–174. https://doi.org/10.1590/ S0100-40422009000100032
  • 18. Gullner G., Komives, T., Király, L., & Schröder, P., 2018. Glutathione S-transferase enzymes in plantpathogen interactions. Frontiers in Plant Science, 9, 1836. https://doi.org/10.3389/fpls.2018.01836
  • 19. Gutiérrez-Martínez P., Torres-Morán, M.I., Romero-Puertas, M., Casas-Solís, J., Zarazúa, P., Sandoval-Pinto, E., & Ramírez-Hernández, B., 2020. Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress//Evaluación de enzimas antioxidantes en hojas y raíces de plantas Phaseolus vulgaris bajo estrés de cadmio. Biotecnia, 22, 110–118. https://doi. org/10.18633/biotecnia.v22i2.1252
  • 20. Habig W.H., Pabst, M.J., & Jakoby, W.B., 1974. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • 21. Heath R.L., & Packer, L., 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  • 22. Hoti A., 2014. The Export Potential of Kosovo’s Natural Resources and their Impact on the Kosovo Economy. AUK, Kosovo
  • 23. John R., Ahmad, P., Gadgil, K., & Sharma, S., 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant, Soil and Environment, 54, 262–270. https:// doi.org/10.17221/2787-PSE
  • 24. Kastrati G., Paçarizi, M., Sopaj, F., Tašev, K., Staf ilov, T., & Mustafa, M.K., 2021. Investigation of concentration and distribution of elements in three environmental compartments in the region of Mitrovica, Kosovo: soil, honey and bee pollen. International Journal of Environmental Research and Public Health, 18(5), 2269. https://doi.org/10.3390/ ijerph18052269
  • 25. Khoubnasabjafari M., & Jouyban, A., 2020. Challenges on determination of malondialdehyde in plant samples. Arch Crop Sci, 4(1), 64–66.
  • 26. Kim H.U., 2020. Lipid Metabolism in Plants. Plants, 9(7), Article 7. https://doi.org/10.3390/ plants9070871
  • 27. Kumar A., Mishra, S., & Chaudhary, M., 2019. Alleviation of heavy metal stress in Nyctanthes arbor-tristis under the treatment of lead. SN Applied Sciences, 1(2), 143. https://doi.org/10.1007/ s42452-018-0150-4
  • 28. Kumar S., & Trivedi, P.K., 2018. Glutathione Stransferases: Role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science, 9. https://www.frontiersin.org/ articles/10.3389/fpls.2018.00751
  • 29. Lowry H., Rosebrough, J., Farr, A.L., & Randall, J., 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), Article 1. https://doi.org/10.1016/ S0021-9258(19)52451-6
  • 30. Ma J., Du, G., Li, X., Zhang, C., & Guo, J., 2015. A major locus controlling malondialdehyde content under water stress is associated with Fusarium crown rot resistance in wheat. Molecular Genetics and Genomics, 290(5), 1955–1962. https://doi. org/10.1007/s00438-015-1053-3
  • 31. Melcher F., & Reichl, C., 2017. Economic geology of the eastern and south-eastern european (ESEE) region. BHM Berg- Und Hüttenmännische Monatshefte, 162(7), 238–244. https://doi. org/10.1007/s00501-017-0625-4
  • 32. Morales M., & Munné-Bosch, S., 2019. Malondialdehyde: Facts and artifacts. Plant Physiology, 180(3), 1246–1250. https://doi.org/10.1104/pp.19.00405
  • 33. Niyoifasha C.J., Borena, B.M., Ukob, I.T., Minh, P.N., Al Azzawi, T.N.I., Imran, M., Ali, S., Inthavong, A., Mun, B.-G., Lee, I.-J., Khan, M., & Yun, B.-W., 2023. Alleviation of Hg-, Cr-, Cu-, and Zninduced heavy metals stress by exogenous sodium nitroprusside in rice plants. Plants, 12(6), Article 6. https://doi.org/10.3390/plants12061299
  • 34. Oztetik E., 2015. Biomarkers of ecotoxicological oxidative stress in an urban environment: Using evergreen plant in industrial areas. Ecotoxicology, 24(4), Article 4. https://doi.org/10.1007/ s10646-015-1433-9
  • 35. Ozuni E., Dhaskali, L., Abeshi, J., Zogaj, M., Haziri, I., Doriana, K.B., & Latifi, F., 2010. Heavy metal in fish for public consumption and consumer protection. Natura Montenegrina, 9, 843–851.
  • 36. Paçarizi M., Stafilov, T., Šajn, R., Tašev, K., & Sopaj, F., 2021. Estimation of elements’ concentration in air in Kosovo through mosses as biomonitors. Atmosphere. https://www.mdpi. com/2073-4433/12/4/415/pdf
  • 37. Pise N.M., Gaikwad, D.K., & Jagtap, T.G., 2013. Oxidative stress and antioxidant indices of the marine red alga Porphyra vietnamensis. Acta Botanica Croatica, 72(2), 197–209. https://doi.org/10.2478/ v10184-012-0024-6
  • 38. Rasheed F., Markgren, J., Hedenqvist, M., & Johansson, E., 2020. Modeling to understand plant protein structure-function relationships – implications for seed storage proteins. Molecules, 25(4), 873. https://doi.org/10.3390/molecules25040873
  • 39. Repetto M., Semprine, J., & Boveris, A., 2012. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. In A. Catala (Ed.), Lipid Peroxidation. InTech. https://doi.org/10.5772/45943
  • 40. Sahiti H., Bislimi, K., Gagica, N., Brahimaj, T., & Dalo, E., 2023. Bioaccumulation and distribution of Pb, Ni, Zn and Fe in stinging nettle (Urtica dioica) tissues and heavy metal-contamination assessment in the industrial zone of smelter Ferronikeli (Drenas-Kosovo). Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 58, 1–6. https://doi.or g/10.1080/10934529.2023.2236535
  • 41. Šajn R., Aliu, M., Stafilov, T., & Alijagić, J., 2013. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. Journal of Geochemical Exploration, 134, 1–16. https://doi.org/10.1016/j. gexplo.2013.06.018
  • 42. Sarkar S., Mondal, M., Ghosh, P., Saha, M., & Chatterjee, S., 2020. Quantification of total protein content from some traditionally used edible plant leaves: A comparative study. Journal of Medicinal Plants Studies, 8. https://doi.org/10.22271/ plants.2020.v8.i4c.1164
  • 43. Solanki R., & Dhankar, R., 2011. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, 66, 195–204. https:// doi.org/10.2478/s11756-011-0005-6
  • 44. Suh M.C., Hahne, G., Liu, J.R., & Stewart, C.N., 2015. Plant lipid biology and biotechnology. Plant Cell Reports, 34(4), 517–518. https://doi. org/10.1007/s00299-015-1780-2
  • 45. Sun L., Wu, Q., & Mao, X., 2022. Effects of Oxidation modification by malondialdehyde on the structure and functional properties of walnut protein. Foods, 11(16), Article 16. https://doi.org/10.3390/ foods11162432
  • 46. Tie S., 2012. Oxidative damage and antioxidant response caused by excess copper in leaves of maize. African Journal of Biotechnology, 11. https://doi.org/10.5897/AJB11.3187
  • 47. Vaish S., Gupta, D., Mehrotra, R., Mehrotra, S., & Basantani, M.K., 2020. Glutathione S-transferase: A versatile protein family. 3 Biotech, 10(7), 321. https://doi.org/10.1007/s13205-020-02312-3
  • 48. Viehweger K., 2014. How plants cope with heavy metals. Botanical Studies, 55(1), 35. https://doi. org/10.1186/1999-3110-55-35
  • 49. Wills E.D., 1969. Lipid peroxide formation in microsomes. General considerations. Biochemical Journal, 113(2), 315–324.
  • 50. Yilmaz S., Kaplan, M., Temizgul, R., & Yılmaz, S., 2017. Antioxidant enzyme response of sorghum plant upon exposure to Aluminum, Chromium and Lead heavy metals. Turkish Journal of Biochemistry, 42. https://doi.org/10.1515/tjb-2016-0112
  • 51. Yohannes Y.B., Nakayama, S.M.M., Yabe, J., Toyomaki, H., Kataba, A., Nakata, H., Muzandu, K., Ikenaka, Y., Choongo, K., & Ishizuka, M., 2022. Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environmental Science and Pollution Research, 29(5), Article 5. https://doi.org/10.1007/ s11356-021-16098-1
  • 52. Zagorchev L., Seal, C., Kranner, I., & Odjakova, M., 2013. A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 14(4), 7405–7432. https://doi.org/10.3390/ijms14047405
  • 53. Zhuge X.-L., Xu, H., Xiu, Z.-J., & Yang, H.-L., 2020. Biochemical functions of glutathione stransferase family of Salix babylonica. Frontiers in Plant Science, 11, 364. https://doi.org/10.3389/ fpls.2020.00364
  • 54. Zogaj M., & Düring, R.-A., 2016. Plant uptake of metals, transfer factors and prediction model for two contaminated regions of Kosovo. Journal of Plant Nutrition and Soil Science, 179(5), Article 5. https:// doi.org/10.1002/jpln.201600022
  • 55. Zogaj M., Paçarizi, M., & Duering, R.-A., 2014. Spatial distribution of heavy metals and assessment of their bioavailability in agricultural soils of Kosovo. Carpathian Journal of Earth and Environmental Sciences, 9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dc3f089-1d20-47e0-b89a-2910eba46ad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.