PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the lower limb prosthesis subjected to various load conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the simulation of a prosthetic socket with an auxetic structure under typical loading cases. The designed model of prosthetic socket is dedicated to patients who have undergone transfemoral amputation and consists of four elements, among which can be distinguished an inner lining, a shock absorbing element, component with a honeycomb re-entrant structure, which has a negative Poisson's ratio an outer shell. The prosthetic socket was analysed by means of the finite element method. The simulations were used to evaluate the strength of the design and to check whether it is possible to avoid a problem of changing the circumference of the patient's stump, thanks to the use of an auxetic structure in the socket.
Rocznik
Strony
art. no. 2020309
Opis fizyczny
Bibliogr. 22 poz., il. kolor.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
Bibliografia
  • 1. M. Paprocka-Borowicz, Ż. Fiodorenko-Dumas, Types of prosthesis funnels used after lower limb thigh amputation, Chirurgia Polska 15(1) (2013) 66-71.
  • 2. E. Łuczak, S. Słaba, R. Rochmiński, E. Rżewska, Evaluation of correctness and efficiency of walking patients after transfemoral amputation, Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 20(1) (2014) 29-38.
  • 3. https://www.lboro.ac.uk/departments/meme/research/research-projects/ideal-material-structure-interface/ (2020.10.20).
  • 4. B. Wang, C. Zhang, C. Zeng, L. D. Kramer, A. Gillis, Prosthetic Socket Apparatus And Systems. U.S. Patent 9486333B2, 2013.
  • 5. T. Walczak, J. K. Grabski, M. Gajewska, M. Michalowska, The Recognition of Human by the Dynamic Determinants of the Gait with Use of ANN, In: Awrejcewicz J. (ed.) Dynamical Systems: Modelling. Springer Proceedings in Mathematics and Statistics, 181 (2015).
  • 6. M. Michalowska, T. Walczak, J. K. Grabski, M. Grygorowicz, Artificial Neural Networks In Knee Injury Risk Evaluation Among Professional Football Players, In: AIP Conference Proceedings, Lublin, (2018) 70002.
  • 7. Z. Wang et al., Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications, Advanced Engineering Materials, China, 2020.
  • 8. D. Łączna, F. Dłużniewski, T. Stręk, Analysis of Eigenfrequencies of the Foot Prosthesis with Auxetic Component Layer, Vibrations in Physical Systems, 31(2) (2020) 2020214.
  • 9. T. Strek, A. Matuszewska, H. Jopek, Finite Elements Analysis of the Influence of the Covering Auxetic Layer of Plate on the Contact Pressure, Physica Status Solidi B 254(12) (2017) 1700103.
  • 10. H. Jopek, Finite Element Analysis of Tunable Composite Tubes Reinforced with Auxetic Structures, Materials, 10(12) (2017) 1359
  • 11. J. Michalski, T. Strek, Fatigue Life of Polymer Dental Crown, Vibrations in Physical Systems, 29 (2018) 29 2018010.
  • 12. H. M. A. Kolken et al., Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials, Mater. Horiz., 5 (2018) 28-35.
  • 13. O. Duncan et al., Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection. Appl. Sci. 8(6) (2018) 941.
  • 14. X. Yu et al., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, 94 (2018) 114-173.
  • 15. A. Poźniak, Computer simulations of the mechanisms leading to the negative Poisson's ratio in various scales, PhD Thesis, Poznan University of Technology, Poznan, 2017.
  • 16. P. U. Kelkar et al., Cellular auxetic structures for mechanical metamaterials: A review, Sensors, 20(11) (2020) 3132.
  • 17. Z. Wang, H. Hu, Auxetic Materials and Their Potential Applications in Textiles, Textile Research Journal, 84 (15) (2014) 1600-1611.
  • 18. T. Strek. J. Michalski. H. Jopek. Computational Analysis of the Mechanical Impedance of the Sandwich Beam with Auxetic Metal Foam Core, Physica Status Solidi B. 256 (2018) 1800423.
  • 19. http://www.zsz.com.pl/Wiedza/analizy_eksperci/Documents/6_Dane_Antropometryczne.pdf (2020.10.20).
  • 20. http://www.genplast.pl/plastics-news-europe/art,17,tpu-do-zastosowan-medycznych.html (2020.10.20).
  • 21. Głowacka, E. Świtoński, R. Michnik, Estimation of muscle forces during gait of healthy children (in Polish: Wyznaczanie sił mięśniowych podczas chodu dzieci zdrowych), Aktualne Problemy Biomechaniki, 6 (2012).
  • 22. D. Wiśniewska, S. Duda, A. Kulik, P. Nowak, M. Waliczek, D. Nowak, Measuring muscle forges with hand dynamometer in the nurse professional group before and after load physical work, Pielęgniarstwo i Zdrowie Publiczne, 9(4) (2019) 259-264.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dc0726d-90cb-492e-8599-8722b0c708dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.