PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of one-part CaO-Na2CO3 activated ground granulated blast furnace slag

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the fresh and hardened performance and durability of one-part ground granulated blast furnace slags (GGBFS) activated by solid CaO and Na2CO3 were discussed, and their hydration process and microstructure development were analyzed accordingly. Results showed that when the water-to-binder ratio was 0.32, the alkali-activated slag (AAS) paste exhibited lower flowability, higher yield stress and plastic viscosity. As the content of CaO and Na2CO3 increased, the yield stress, plastic viscosity, and compressive strength of AAS after hardening all increased. For the durability of the hardened sample, AAS with high content of activator have higher shrinkage strain and chloride ion flux. The microscopic analysis results indicated that AAS containing CaO and Na2CO3 exhibited more intense hydration heat release and rapid microstructure development in the early stage, thereby promoting the improvement of strength. The use of CaO and Na2CO3 to activate GGBFS has enormous application potential in solid waste utilization and carbon emission reduction, which can reasonably replace traditional Portland cement (PC) as a new generation of sustainable cementitious materials.
Słowa kluczowe
Rocznik
Strony
461--476
Opis fizyczny
Bibliogr. 38 poz., il., tab.
Twórcy
autor
  • Henan Open University, School of Architectural Engineering and Intelligent Construction, Zhengzhou, China
Bibliografia
  • [1] M. Schneider, M. Romer, M. Tschudin, and H. Bolio, “Sustainable cement production - present and future”, Cement and Concrete Research, vol. 41, no. 7, pp. 642-650, 2011, doi: 10.1016/j.cemconres.2011.03.019.
  • [2] F.N. Stafford, A.C. Dias, L. Arroja, J.A. Labrincha, and D. Hotza, “Life cycle assessment of the production of Portland cement: a Southern Europe case study”, Journal of Cleaner Production, vol. 126, pp. 159-165, 2016, doi: 10.1016/j.jclepro.2016.02.110.
  • [3] J. Gołaszewski and M. Gołaszewska, “Properties of mortars with Calcium Sulfoaluminate cements with the addition of Portland cement and limestone”, Archives of Civil Engineering, vol. 67, no. 2, pp. 425-435, 2021, doi: 10.24425/ace.2021.137177.
  • [4] W. Shen, et al., “Cement industry of China: driving force, environment impact and sustainable development”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 618-628, 2017, doi: 10.1016/j.rser.2016.11.033.
  • [5] S. Her, T. Park, E. Zalnezhad, and S. Bae, “Synthesis and characterization of cement clinker using recycled pulverized oyster and scallop shell as limestone substitutes”, Journal of Cleaner Production, vol. 278, 2021, doi: 10.1016/j.jclepro.2020.123987.
  • [6] L. Poudyal and K. Adhikari, “Environmental sustainability in cement industry: An integrated approach for green and economical cement production”, Resources, Environment and Sustainability, vol. 4, art. no. 100024, 2021, doi: 10.1016/j.resenv.2021.100024.
  • [7] W. Shen, L. Cao, Q. Li, W. Zhang, G. Wang, and C. Li, “Quantifying CO2 emissions from China’s cement industry”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 1004-1012, 2015, doi: 10.1016/j.rser.2015.05.031.
  • [8] K. Kuzmenko, N. Ducoulombier, A. Feraille, and N. Roussel, “Environmental impact of extrusion-based additive manufacturing: generic model, power measurements and influence of printing resolution”, Cement and Concrete Research, vol. 157, art. no. 106807, 2022, doi: 10.1016/j.cemconres.2022.106807.
  • [9] R.M. Andrew, "Global CO 2 emissions from cement production”, Earth System Science Data, vol. 10, no. 1, pp. 195-217, 2018.
  • [10] A. Palomo, M. Grutzeck, and M. Blanco, “Alkali-activated fly ashes: A cement for the future”, Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, 1999, doi: 10.1016/S0008-8846(98)00243-9.
  • [11] F. Puertas, S. Martıìnez-Ramıìrez, S. Alonso, and T. Vazquez, “Alkali-activated fly ash/slag cements: strength behaviour and hydration products”, Cement and Concrete Research, vol. 30, no. 10, pp. 1625-1632, 2000, doi: 10.1016/S0008-8846(00)00298-2.
  • [12] M.B. Haha, G. Le Saout, F.Winnefeld, and B. Lothenbach, “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags”, Cement and Concrete Research, vol. 41, no. 3, pp. 301-310, 2011, doi: 10.1016/j.cemconres.2010.11.016.
  • [13] F. Pacheco-Torgal, Z. Abdollahnejad, A. Camőes, M. Jamshidi, and Y. Ding, “Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?”, Construction and Building Materials, vol. 30, pp. 400-405, 2012, doi: 10.1016/j.conbuildmat.2011.12.017.
  • [14] J.L. Provis, “Alkali-activated materials”, Cement and Concrete Research, vol. 114, pp. 40-48, 2018, doi: 10.1016/j.cemconres.2017.02.009.
  • [15] C. Lu, Z. Zhang, C. Shi, N. Li, D. Jiao, and Q. Yuan, “Rheology of alkali-activated materials: A review”, Cement and Concrete Composites, vol. 121, art. no. 104061, 2021, doi: 10.1016/j.cemconcomp.2021.104061.
  • [16] A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization”, Journal of Non-Crystalline Solids, vol. 357, no. 21, pp. 3565-3571, 2011, doi: 10.1016/j.jnoncrysol.2011.07.013.
  • [17] T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen, “One-part alkali-activated materials: A review”, Cement and Concrete Research, vol. 103, pp. 21-34, 2018, doi: 10.1016/j.cemconres.2017.10.001.
  • [18] A. Wang, et al., “The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review”, Engineering, vol. 6, no. 6, pp. 695-706, 2020, doi: 10.1016/j.eng.2019.08.019.
  • [19] M. Komljenović, Z. Baščarević, and V. Bradić, “Mechanical and microstructural properties of alkali-activated fly ash geopolymers”, Journal of Hazardous Materials, vol. 181, no. 1-3, pp. 35-42, 2010, doi: 10.1016/j.jhazmat.2010.04.064.
  • [20] M.O. Yusuf, M.A.M. Johari, Z.A. Ahmad, and M. Maslehuddin, “Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag”, Construction and Building Materials, vol. 52, pp. 504-510, 2014, doi: 10.1016/j.conbuildmat.2013.11.012.
  • [21] N. Li, N. Farzadnia, and C. Shi, “Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation”, Cement and Concrete Research, vol. 100, pp. 214-226, 2017, doi: 10.1016/j.cemconres.2017.07.008.
  • [22] T. Yang, H. Zhu, Z. Zhang, X. Gao, C. Zhang, and Q.Wu, “Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes”, Cement and Concrete Research, vol. 109, pp. 198-207, 2018, doi: 10.1016/j.cemconres.2018.04.008.
  • [23] H. Alghamdi, S.A.O. Nair, and N. Neithalath, “Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders”, Materials & Design, vol. 167, 2019, doi: 10.1016/j.matdes.2019.107634.
  • [24] L. Li, J.-X. Lu, B. Zhang, and C.-S. Poon, “Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes”, Construction and Building Materials, vol. 258, 2020, doi: 10.1016/j.conbuildmat.2020.120381.
  • [25] Y. Chen, C. Liu, R. Cao, C. Chen, V. Mechtcherine, and Y. Zhang, “Systematical investigation of rheological performance regarding 3D printing process for alkali-activated materials: Effect of precursor nature”, Cement and Concrete Composites, vol. 128, art. no. 104450, 2022, doi: 10.1016/j.cemconcomp.2022.104450.
  • [26] Y. Alrefaei, Y.-S. Wang, and J.-G. Dai, “The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes”, Cement and Concrete Composites, vol. 97, pp. 166-174, 2019, doi: 10.1016/j.cemconcomp.2018.12.027.
  • [27] E. Adesanya, A. Aladejare, A. Adediran, A. Lawal, and M. Illikainen, “Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN)”, Cement & Concrete Composites, vol. 124, art. no. 104265, 2021, doi: 10.1016/j.cemconcomp.2021.104265.
  • [28] A.A.M. Neto, M.A. Cincotto, and W. Repette, “Drying and autogenous shrinkage of pastes and mortars with activated slag cement”, Cement and Concrete Research, vol. 38, no. 4, pp. 565-574, 2008, doi: 10.1016/j.cemconres.2007.11.002.
  • [29] A. Domingo-Cabo, C. Lázaro, F. López-Gayarre, M. Serrano-López, P. Serna, and J. O. Castańo-Tabares, “Creep and shrinkage of recycled aggregate concrete”, Construction and Building Materials, vol. 23, no. 7, pp. 2545-2553, 2009, doi: 10.1016/j.conbuildmat.2009.02.018.
  • [30] A. Gonzalez-Corominas and M. Etxeberria, “Effects of using recycled concrete aggregates on the shrinkage of high performance concrete”, Construction and Building Materials, vol. 115, pp. 32-41, 2016, doi: 10.1016/j.conbuildmat.2016.04.031.
  • [31] G.M. Moelich, J. Kruger, and R. Combrinck, “Plastic shrinkage cracking in 3D printed concrete”, Composites Part B: Engineering, vol. 200, art. no. 108313, 2020, doi: 10.1016/j.compositesb.2020.108313.
  • [32] S. Yang, “Effect of different types of recycled concrete aggregates on equivalent concrete strength and drying shrinkage properties”, Applied Sciences, vol. 8, no. 11, art. no. 2190, 2018, doi: 10.3390/app8112190.
  • [33] J. Xiang, L. Liu, X. Cui, Y. He, G. Zheng, and C. Shi, “Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials”, Cement and Concrete Composites, vol. 104, 2019, doi: 10.1016/j.cemconcomp.2019.103381.
  • [34] B. Zhang, H. Zhu, Y. Cheng, G.F. Huseien, and K.W. Shah, “Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: A critical review”, Construction and Building Materials, vol. 318, art. no. 125993, 2022, doi: 10.1016/j.conbuildmat.2021.125993.
  • [35] H. Ye and A. Radlińska, “Shrinkage mechanisms of alkali-activated slag”, Cement and Concrete Research, vol. 88, pp. 126-135, 2016, doi: 10.1016/j.cemconres.2016.07.001.
  • [36] H. Ye and A. Radlińska, “Shrinkage mitigation strategies in alkali-activated slag”, Cement and Concrete Research, vol. 101, pp. 131-143, 2017, doi: 10.1016/j.cemconres.2017.08.025.
  • [37] J.C. Roelofs, J.A. van Bokhoven, A.J. Van Dillen, J.W. Geus, and K.P. de Jong, “The thermal decomposition of Mg-Al hydrotalcites: effects of interlayer anions and characteristics of the final structure”, Chemistry-A European Journal, vol. 8, no. 24, pp. 5571-5579, 2002, doi: 10.1002/1521-3765(20021216)8:24<5571::AIDCHEM5571>3.0.CO;2-R.
  • [38] K.S. Karunadasa, C. Manoratne, H. Pitawala, and R. Rajapakse, “Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction”, Journal of Physics and Chemistry of Solids, vol. 134, pp. 21-28, 2019, doi: 10.1016/j.jpcs.2019.05.023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dc04b27-a56e-4230-a03d-7a0dc9f4e4ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.