PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cheap nano-clay additive as a lubricating enhancer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cheap nano-clay (montmorillonite) was taken into consideration in this study as an additive to mineral oil to improve its lubricating properties. Mineral oils form the basis of speciality lubricants for food processing technology due to their biodegradability. In contrast to synthetic oils they are also less harmful. Literature indicates that nano-particles additives have a huge impact on lubricating properties. In this work wear scare diameter (WSD), friction coefficient and film thickness were studied. High frequency reciprocating rig (HFRR) was used to measure the said lubricating properties of prepared mixtures. Authors performed roughness measurements on sample plates after HFRR tests to study the relationship between WSD and Ra.
Rocznik
Strony
103--109
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Warsaw, 141 Woloska, Poland
autor
  • Automotive Industry Institute, Warsaw, 55 Jagiellonska, Poland
autor
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Warsaw, 141 Woloska, Poland
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Warsaw, 141 Woloska, Poland
Bibliografia
  • [1] V. N. Bakunin, A. Y. Suslov, G. N. Kuźmina, L. M. Vedeneeva, O. P. Parenago, C. A. Migdal, P. E. Stott, Surface-capped molybdenum sulphide nanoparticles - a novel type of lubricant additive, Lubrication Science 16 (3) (2004) 207–214. doi:10.1002/ls.3010160302.
  • [2] L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS 2 nanoparticles: Superior lubricants for harsh conditions, Advanced Materials 15 (7-8) (2003) 651–655. doi:10.1002/adma.200301640.
  • [3] J. Padgurskas, R. Rukuiza, I. Prosycevas, R. Kreivaitis, Tribological properties of lubricant additives of fe, cu and co nanoparticles, Tribology International 60 (2013) 224–232. doi:10.1016/j.triboint.2012.10.024.
  • [4] S. Chen, W. Liu, Oleic acid capped pbs nanoparticles: Synthesis, characterization and tribological properties, Materials Chemistry and Physics 98 (1) (2006) 183–189. doi:10.1016/j.matchemphys.2005.09.043.
  • [5] W. Zhang, S. Chen, W. Liu, L. Yu, Friction and wear behavior of sialon (ca,mg)-sialon with lubrication by coated pbs nanoparticles as oil additives, Lubrication Science 16 (1) (2003) 47–56. doi:10.1002/ls.3010160104.
  • [6] S. Aralihalli, S. K. Biswas, Grafting of dispersants on MoS 2 nanoparticles in base oil lubrication of steel, Tribology Letters 49 (1) (2013) 61–76. doi:10.1007/s11249-012-0042-5.
  • [7] W. Liu, S. Chen, An investigation of the tribological behaviour of surface-modified zns nanoparticles in liquid paraffin, Wear 238 (2) (2000) 120–124. doi:10.1016/S0043-1648(99)00344-0.
  • [8] L. Wang, Y. Gao, Z. Li, A. Zhou, P. Li, Preparation and tribological properties of surface-modified zns nanoparticles, Lubrication Science 27 (4) (2015) 241–250, lS-14-0003-RA-LS.R1. doi:10.1002/ls.1275.
  • [9] Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, Tribological behavior of copper nanoparticles as additives in oil, Current Applied Physics 9 (2, Supplement) (2009) e124 – e127, nano Korea 2008 Symposium. doi:10.1016/j.cap.2008.12.050.
  • [10] S. J. Asadauskas, R. Kreivaitis, G. Bikulčius, A. Grigucevičiene, J. Padgurskas, Tribological effects of cu, fe and zn nano-particles, suspended in mineral and bio-based oils, Lubrication Science 28 (3) (2016) 157–176. doi:10.1002/ls.1307.
  • [11] G. Liu, X. Li, N. Lu, R. Fan, Enhancing aw/ep property of lubricant oil by adding nano al/sn particles, Tribology Letters 18 (1) (2005) 85–90. doi:10.1007/s11249-004-1760-0.
  • [12] H. Y. Chu, W. C. Hsu, J. F. Lin, Scuffing mechanism during oil lubricated block-on-ring test with diamond nanoparticles as oil additive, Wear 268 (11-12) (2010) 1423–1433. doi:10.1016/j.wear.2010.02.016.
  • [13] H. Chu, W. Hsu, J. c. Lin, The anti-scuffing performance of diamond nano-particles as an oil additive, Wear 268 (7-8) (2010) 960–967, cited By 29. doi:10.1016/j.wear.2009.12.023.
  • [14] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil, Current Applied Physics 9 (2, Supplement) (2009) e128 – e131, nano Korea 2008 Symposium. doi:10.1016/j.cap.2008.12.054.
  • [15] H. Huang, J. Tu, L. Gan, C. Li, An investigation on tribological properties of graphite nanosheets as oil additive, Wear 261 (2) (2006) 140–144. doi:10.1016/j.wear.2005.09.010.
  • [16] T. Jun, X. Qunji, A graphite intercalation compound additive in oil, Lubrication Science 8 (4) (1996) 353–358. doi:10.1002/ls.3010080403.
  • [17] D.-L. Cursaru, C. Andronescu, C. Pirvu, R. Ripeanu, The efficiency of co-based single-wall carbon nanotubes (SWnts) as an aw/ep additive for mineral base oils, Wear 290-291 (2012) 133–139. doi:10.1016/j.wear.2012.04.019.
  • [18] C.-x. Gu, G.-j. Zhu, L. Li, X.-y. Tian, G.-y. Zhu, Tribological effects of oxide based nanoparticles in lubricating oils, Journal of Marine Science and Application 8 (1) (2009) 71–76. doi:10.1007/s11804-009-8008-1.
  • [19] A. H. Battez, R. Gonzalez, J. Viesca, J. Fernandez, J. D. Fernandez, A. Machado, R. Chou, J. Riba, Cuo, ZrO2 and zno nanoparticles as antiwear additive in oil lubricants, Wear 265 (3-4) (2008) 422–428. doi:10.1016/j.wear.2007.11.013.
  • [20] M.-J. Kao, C.-R. Lin, Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron, Journal of Alloys and Compounds 483 (1-2) (2009) 456–459, 14th International Symposium on Metastable and Nano-Materials (ISMANAM-2007). doi:10.1016/j.jallcom.2008.07.223.
  • [21] C. Turta, S. Melnic, D. Prodius, F. Macaev, H. Stoeckli-Evans, P. Ruiz, D. Muraviev, S. Pogrebnoi, Z. Ribkovskaia, V. Mereacre, Y. Lan, A. K. Powell, Sunflower oil coating on the nanoparticles of iron(iii) oxides, Inorganic Chemistry Communications 13 (12) (2010) 1402–1405. doi:10.1016/j.inoche.2010.07.046.
  • [22] Z. Hu, R. Lai, F. Lou, L. Wang, Z. Chen, G. Chen, J. Dong, Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive, Wear 252 (5-6) (2002) 370–374. doi:10.1016/S0043-1648(01)00862-6.
  • [23] Q. Sunqing, D. Junxiu, C. Guoxu, Tribological properties of CeF3 nanoparticles as additives in lubricating oils, Wear 230 (1) (1999) 35–38. doi:10.1016/S0043-1648(99)00084-8.
  • [24] R. Liu, X. Wei, D. Tao, Y. Zhao, Study of preparation and tribological properties of rare earth nanoparticles in lubricating oil, Tribology International 43 (5-6) (2010) 1082–1086, special Issue on Second International Conference on Advanced Tribology (iCAT2008). doi:10.1016/j.triboint.2009.12.026.
  • [25] Q. Sunqing, D. Junxiu, C. Guoxu, Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils, Lubrication Science 12 (2) (2000) 205–212. doi:10.1002/ls.3010120207.
  • [26] P. Ye, X. Jiang, S. Li, S. Li, Preparation of NiMoO2S 2 nanoparticle and investigation of its tribological behavior as additive in lubricating oils, Wear 253 (5-6) (2002) 572–575. doi:10.1016/S0043-1648(02)00042-X.
  • [27] E. F. Rico, I. Minondo, D. G. Cuervo, The effectiveness of ptfe nanoparticle powder as an ep additive to mineral base oils, Wear 262 (11–12) (2007) 1399–1406. doi:10.1016/j.wear.2007.01.022.
  • [28] M. Fiedler, R. Sanchez, E. Kuhn, J. M. Franco, Influence of oil polarity and material combination on the tribological response of greases formulated with biodegradable oils and bentonite and highly dispersed silica acid, Lubrication Science 25 (6) (2013) 397–412. doi:10.1002/ls.1207.
  • [29] W. Tuszyński, W. Piekoszewski, Effect of the type and concentration of lubricating additives on the antiwear and extreme pressure properties and rolling fatigue life of a four-ball tribosystem, Lubrication Science 18 (4) (2006) 309–328. doi:10.1002/ls.25.
  • [30] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metallurgical and Materials Transactions A 39 (12) (2008) 2804–2814. doi:10.1007/s11661-008-9603-5.
  • [31] Q.-Q. Liao, G.-D. Zhou, H.-H. Ge, L.-M. Qi, Characterisation of surface film on iron samples treated with octadecylamine, Corrosion Engineering, Science and Technology 42 (2) (2007) 102–105. arXiv:http://dx.doi.org/10.1179/174327807X159880, doi:10.1179/174327807X159880.
  • [32] S. Mallakpour, M. Madani, Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties, Bulletin of Materials Science 35 (3) (2012) 333–339. doi:10.1007/s12034-012-0304-8.
  • [33] B. Arkles, Silane coupling agents: Connecting across boundaries (2014).
  • [34] J. Skibinski, J. Rebis, T. Wejrzanowski, K. Rozniatowski, K. Pressard, K. Kurzydlowski, Imaging resolution of afm with probes modified with fib, Micron 66 (2014) 23–30. doi:10.1016/j.micron.2014.05.001.
  • [35] T. Wejrzanowski, W. Spychalski, K. Różniatowski, K. Kurzydłowski, Image based analysis of complex microstructures of engineering materials 18 (2008) 33–39.
  • [36] T. Wejrzanowski, M. Lewandowska, K. Kurzydłowski, Stereology of nanomaterials, Image Analysis and Stereology 29 (1) (2010) 1–12. doi:10.5566/ias.v29.p1-12.
  • [37] D. Zhu, Effect of surface roughness on mixed ehd lubrication characteristics, Tribology Transactions 46 (1) (2003) 44–48. arXiv:http://dx.doi.org/10.1080/10402000308982598, doi:10.1080/10402000308982598.
  • [38] L. Lin, Assessment of effects of surface roughness and oil viscosity on friction coefficient under lubricated rolling-sliding conditions, Komatsu Technical Report 59 (166).
  • [39] M. R. Lovell, M. A. Kabir, P. L. Menezes, C. F. Higgs, Influence of boric acid additive size on green lubricant performance, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 368 (1929) (2010) 4851–4868. arXiv:http://rsta.royalsocietypublishing.org/content/368/1929/4851.full.pdf, doi:10.1098/rsta.2010.0183.
  • [40] S. Achanta, D. Drees, J.-P. Celis, Investigation of friction on hard homogeneous coatings during reciprocating tests at micro-newton normal forces, Wear 263 (7–12) (2007) 1390–1396, 16th International Conference on Wear of Materials. doi:10.1016/j.wear.2006.12.013.
  • [41] M. Sulek, A. Kulczycki, A. Malysa, Assessment of lubricity of compositions of fuel oil with biocomponents derived from rape-seed, Wear 268 (1–2) (2010) 104–108. doi:10.1016/j.wear.2009.07.004.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dbc6961-c5dd-4d71-8eb5-667940440b62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.