PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Nanomaterial Type on Water Disinfection Using Data Mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiple linear regression and artificial neural network (ANN) models were utilized in this study to assess the type influence of nanomaterials on polluted water disinfection. This was accomplished by estimating E. coli (E.C) and the total coliform (TC) concentrations in contaminated water while nanoparticles were added at various concentrations as input variables, together with water temperature, PH, and turbidity. To achieve this objective, two approaches were implemented: data mining with two types of artificial neural networks (MLP and RBF), and multiple linear regression models (MLR). The simulation was conducted using SPSS software. Data mining was revealed after the estimated findings were checked against the measured data. It was found that MLP was the most promising model in the prediction of the TC and E.C concentration, s followed by the RBF and MLR models, respectively.
Rocznik
Strony
244--251
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Renewable Energy Technology Department, Applied Science Private University, Amman, Jordan
  • Renewable Energy Engineering Department, Jadara University, Irbid, Jordan
  • Department of Alternative Energy Technology, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
autor
  • Department of Renewable Energies and Decentralized Energy Supply, University of Applied Sciences and Arts, Werftestrasse 4, CH-6002 Luzern, Switzerland
Bibliografia
  • 1. Aboushi A., Hamdan M., Abdelhafez E., Turk E., Ibbini J., Abu Shaban N. 2021. Water disinfection by Solar Energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(17), 2088–2098.
  • 2. Agnihotri S., Mukherji S., Mukherji S. 2013. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328.
  • 3. Boyle M., Sichel C., Fernández-Ibáñez P., Arias-Quiroz GB., Iriarte-Puña M., Mercado A., Ubomba-Jaswa E., McGuigan KG. 2008. Bactericidal effect of solar water disinfection under real sunlight conditions. Applied and Environmental Microbiology Journal, 74(10), 2997-3001.
  • 4. Burhan D. 2015. Solar water disinfection considerations: Using ultraviolet light methods to make water safe to drink. IJISET - International Journal of Innovative Science, Engineering & Technology, 2, 253–64.
  • 5. Castro-Alférez, M., Polo-López M.I., Marugán J., Fernández-Ibáñez P. 2017. Mechanistic modeling of UV and mild-heat synergistic effect on solar water disinfection. Chemical Engineering Journal, 316, 111-120.
  • 6. Dawney B., Pearce J.M. 2012. Optimizing the solar water disinfection (SODIS) method by decreasing turbidity with NaCl. Journal of Water, Sanitation and Hygiene for Development, 2(2), 87-94.
  • 7. Duarte A. A. L. S., Amorim, M. T. P. 2017. Photocatalytic Treatment Techniques using Titanium Dioxide Nanoparticles for Antibiotic Removal from Water. Application of Titanium Dioxide.
  • 8. Giannakis S., Darakas E., Escalas-Cañellas A., Pulgarin C.2015. Temperature-dependent change of light dose effects on E. coli inactivation during simulated solar treatment of secondary effluent. Chemical Engineering Science, 126, 483-487
  • 9. Gutiérrez-Alfaro S., Acevedo A., Figueredo M., Saladin M., Manzano M. A. 2016. Accelerating the process of solar disinfection (SODIS) by using polymer bags. Journal of Chemical Technology & Biotechnology, 92 (2), 298-304.
  • 10. Hamdan M., Al Louzi R., Al Aboushi A., Abdelhafez E. 2022. Enhancement of Solar Water Disinfection Using Nano catalysts, Journal of Ecological Engineering, 23(12),14–20.
  • 11. Hamdan M., Darabee S. 2017. Enhancement of Solar Water Disinfection using Nanotechnology. International Journal of Thermal & Environmental Engineering,15(2), 111-116.
  • 12. Islam Md., Azad A.K.,Akber Md., Rahman M., Sadhu I. 2015. Effectiveness of solar disinfection (SODIS) in rural coastal Bangladesh. Journal of water and health, 13(4), 1113-1122.
  • 13. Keane D. A., McGuigan K. G., Ibáñez P. F., Polo-López M. I., Byrne J. A., Dunlop P. S., O’Shea K., Dionysiou D. D., Pillai S. C. 2014. Solar photocatalysis for water disinfection: Materials and reactor design. Catalysis Science & Technology, 4(5), 1211–1226.
  • 14. Keeratipibul S., Phewpan A., Lursinsap. 2011. Prediction of coliforms and Escherichia coli on tomato fruits and lettuce leaves after sanitizing by using Artificial Neural Networks. LWT - Food Science and Technology, 44(1), 130-138.
  • 15. Keogh M.B., Elmusharaf K., Borde P., McGuigan K.G. 2017. Evaluation of the natural coagu¬lant Moringa oleifera as a pretreatment for SODIS in contaminated turbid water. Solar Energy, 158, 448-454.
  • 16. Koslowski L. A., Nogueira A. L., Licodiedoff S., Comper A. T., Folgueras M. V. 2018. Silver nanoparticles impregnated with polyamide-66 to disinfect drinking water. Revista Ambiente & Água, 13(6).
  • 17. Kumar S., Ahlawat W., Bhanjana G., Heydarifard S., Nazhad M. M., Dilbaghi N. 2014. Nanotechnology-based water treatment strategies. Journal of Nanoscience and Nanotechnology, 14(2), 1838–1858.
  • 18. Lawrie K., Mills A., Figueredo-Fernández M., Gutiérrez-Alfaro S., Manzano M., Saladin M. 2015. UV dosimetry for solar water disinfection (SODIS) carried out in different plastic bottles and bags. Sensors and Actuators B: Chemical, 208, 608-615.
  • 19. Lydakis-Simantiris N., Riga D., Katsivela E., Mantzavinos D., Xekoukoulotakis, N. P. 2010. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination, 250(1), 351–355.
  • 20. Polo D., García-Fernández I., Fernández-Ibáñez P., Romalde JL. 2015. Solar water disinfection (SODIS): Impact on hepatitis A virus and on a human Norovirus surrogate under natural solar conditions, Int. Microbiol, 18(1), 41-49.
  • 21. Utami F. D., Rahman D. Y., Sutisna, Kamirul, Margareta D. O., Abdullah M. 2019. Photocatalyst based on TiO2 and its application in organic wastewater treatment using simple spray method. Journal of Physics: Conference Series, 1204, 012086.
  • 22. Wang H., Zhou P., Guo R., Wang Y., Zhan H., Yuan Y. 2018. Synthesis of rectorite/FE3O4/zno composites and their application for the removal of methylene blue dye. Catalysts, 8(3), 107.
  • 23. Xu C., Rangaiah G. P., Zhao X. S. 2015. Application of artificial neural network and genetic programming in modeling and optimization of ultraviolet water disinfection reactors. Chemical Engineering Communications, 202(11), 1415-1424.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dbbcc61-82ef-4a17-94ca-9f27d2944a4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.