Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the Sobolev-type multi-term μ-fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e149170
Opis fizyczny
Bibliogr 28 poz.
Twórcy
autor
- Department of Medical Services and Techniques, Muradiye Vocational School, Van Yuzuncu Yil University, Tuşba 65080 Van, Turkey
autor
- Department of Mathematics, Eastern Mediterranean University, Famagusta 99628 T.R. North Cyprus, Turkey
- Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku 1001, Azerbaijan
Bibliografia
- [1] R. Kamocki, “Existence of optimal control for multi-order fractional optimal control problems,” Arch. Control Sci., vol. 32, no. 2, pp. 279–303, 2022, doi: 10.24425/acs.2022.141713.
- [2] M. Aydin and N. Mahmudov, “𝜓-Caputo type time-delay Langevin equations with two general fractional orders,” Math. Meth. Appl. Sci., vol. 46, no. 8, pp. 9187–9204, 2023, doi: 10.1002/mma.9047.
- [3] M. Aydin and N. Mahmudov, “On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices,” Chaos Solitons Fractals, vol. 161, no. 112372, pp. 1–11, 2022, doi: 10.1016/j.chaos.2022.112372.
- [4] B. Sikora, “Results on the controllability of Caputo’s fractional descriptor systems with constant delays,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146287, 2023, doi: 10.24425/bpasts.2023.146287.
- [5] J. Lightbourne and S. Rankin, “A partial functional differential equation of Sobolev type,” J. Math. Anal. Appl., vol. 93, no. 2, pp. 328–337, 1983.
- [6] A. Debbouche and D. Torres, “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional non-local conditions,” Fract. Calc. Appl. Anal., vol. 18, pp. 95–121, 2015.
- [7] K. Balachandran, S. Kiruthika, and J. Trujillo, “On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces,” Comput. Math. Appl., vol. 62, pp. 1157–1165, 2011.
- [8] K. Balachandran and J. Dauer, “Controllability of functional differential systems of Sobolev type in Banach spaces,” Kybernetika, vol. 34, no. 3, pp. 349–357, 1998.
- [9] J. Wang, M. Feckan, and Y. Zhou, “Controllability of Sobolev type fractional evolution systems,” Dyn. Partial Differ. Equ., vol. 11, no. 1, pp. 71–87, 2014.
- [10] M. Feckan, J. Wang, and J. Zhou, “Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators,” J. Optim. Theory Appl., vol. 156, pp. 79–95, 2013.
- [11] N. Mahmudov, “Existence and approximate controllability of Sobolev type fractional stochastic evolution equations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 2, pp. 1–11, 2014, doi: 10.2478/bpasts-2014-0020.
- [12] N. Mahmudov, “Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces,” Abstract Appl. Anal., vol. 2013, 2013, doi: 10.1155/2013/502839.
- [13] Y. Chang, R. Ponce, and S. Rueda, “Fractional differential equations of Sobolev type with sectorial operators,” Semigroup Forum, vol. 99, pp. 591–606, 2019.
- [14] J. Wang and X. Li, “A uniform method to ulam–hyers stability for some linear fractional equations,” Mediterr. J. Math., vol. 13, pp. 625–635, 2016.
- [15] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science, 2006.
- [16] R. Almeida, “A Caputo fractional derivative of a function with respect to another function,” Commun. Nonlinear Sci. Numer. Simul., vol. 44, pp. 460–481, 2017. doi: 10.1016/j.cnsns.2016.09.006.
- [17] M. Aydin, N. Mahmudov, H. Aktuğlu, E. Baytunç, and M. Atamert, “On a study of the representation of solutions of a 𝜓-Caputo fractional differential equations with a single delay,” Electron. Res. Arch., vol. 30, no. 3, pp. 625–635, 2022, doi: 10.3934/era.2022053.
- [18] N. Mahmudov, A. Ahmadova, and I. Huseynov, “A novel technique for solving Sobolev-type fractional multi-order evolution equations,” Comput. Appl. Math., vol. 41, no. 71, 2022, doi: 10.1007/s40314-022-01781-x.
- [19] Y. Gambo, F. Jarad, D. Baleanu, and A. T, “On Caputo modification of the hadamard fractional derivatives,” Adv. Differ. Equ., vol. 10, no. 2014, 2014, doi: 10.1186/1687-1847-2014-10.
- [20] F. Jarad, T. Abdeljawad, and D. Baleanu, “Caputo-type modification of the hadamard fractional derivatives,” Adv. Differ. Equ., vol. 142, no. 2012, 2012, doi: 10.1186/1687-1847-2012-142.
- [21] Y. Luchko and J. Trujillo, “Caputo-type modification of the erdélyi–kober fractional derivative,” Fract. Calc. Appl. Anal., vol. 10, no. 3, pp. 249–267, 2016.
- [22] R. Almeida, A. Malinowska, and M. Monteiro, “Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications,” Math. Meth. Appl. Sci., vol. 41, no. 1, pp. 336–352, 2018.
- [23] F. Jarad and T. Abdeljawad, “Generalized fractional derivatives and laplace transform,” Discret. Contin. Dyn. Syst.-Ser. S, vol. 13, no. 3, pp. 709–722, 2020, doi: 10.3934/dcdss.2020039.
- [24] A. Ansari, “The generalized laplace transform and fractional differential equations of distributed orders,” J. Differ. Equ. Control Process., vol. 2012, no. 3, pp. 1–11, 2012.
- [25] H. Fahad, M. Rehman, and A. Fernandez, “On laplace transforms with respect to functions and their applications to fractional differential equations,” Math. Meth. Appl. Sci., vol. 46, no. 7, pp. 8304–8323, 2021, doi: 10.1002/mma.7772.
- [26] T. Prabhakar, “A singular integral equation with a generalized mittag-leffler function in the kernel,” Yokohama Math. J., vol. 19, pp. 7–15, 1971.
- [27] A. Fernandez, C. Kürt, and M. Özarslan, “A naturally emerging bivariate mittag- leffler function and associated fractionalcalculus operators,” Comput. Appl. Math., vol. 39, 2020, doi: 10.1007/s40314-020-01224-5.
- [28] E. Kreyszig, Introductory Functional Analysis with Applications. New York: Jon Wiley & Sons, 1978.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3db9a726-b17e-4ca2-ad02-da3b2d99dacf