PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Window layer based on ZnO and Ag thin films incorporated in solar cells as a part of hybrid energy-saving system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have started a new research project on a hybrid power generation system consisting of piezoelectric, thermoelectric and solar cell modules. In the first step, we have focused on the antireflection coating based on zinc oxide (ZnO) and metal nanolayers incorporated in solar cells. In layered structure containing ZnO and metal nanoscale layers, we have presented the possibility of increasing wave transmission in the visible region by adding the top and bottom cap layers. The enhancement of optical transmission is very important in improving the performance of sensor protections, solar cells, UV protective films and transparent conductive display panels electrode. It is found that, the structure containing both the top and bottom cap layers (S3) yields larger transmittance than the structures S1 without any cap or S2 just with one cap layer. The maximum transmittance in the visible range can be increased from 33% to 67%. In addition, for the TE mode (TM mode), the maximum value of transmission in the S1 and S2 structures occurs at angles close to normal incidence while in the S3 multilayer it happens around 1 radian, that is, the behavior of the TE mode is the opposite of the TM mode. Also, when the incident angle varies, the band edges experience a blue shift. The amount of TE shift is more pronounced than TM one. Moreover, the metal with higher plasma frequency will move the band gap edges to the higher frequencies.
Czasopismo
Rocznik
Strony
141--152
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  • Department of Electrical Engineering, Khoy Branch, Islamic Azad University, khoy, Iran
autor
  • MSFAB, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
autor
  • Department of Physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Bibliografia
  • [1] LIN Y.H., YANG P.C., HUANG J.S., HUANG G.D., WANG I.J., WU W.H., LIN M.Y., SU W.F., LIN C.F., High-efficiency inverted polymer solar cells with solution-processed metal oxides, Solar Energy Materials and Solar Cells 95(8), 2011: 2511–2515, DOI: 10.1016/j.solmat.2011.05.005.
  • [2] FOO K.L., KASHIF M., HASHIM U., LIU W.W., Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications, Ceramics International 40(1), 2014: 753–761, DOI: 10.1016/j.ceramint.2013.06.065.
  • [3] MANDALAPU L.J., YANG Z., CHU S., LIU J.L., Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes, Applied Physics Letters 92(12), 2008: 122101, DOI: 10.1063/1.2901018.
  • [4] YUEN C., YU S.F., LAU S.P., CHEN G.C.K., Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique, Journal of Crystal Growth 287(1), 2006: 204–212, DOI: 10.1016/j.jcrysgro.2005.10.068.
  • [5] ALI M.G., SINGH S., CHAKRABARTI P., Ultraviolet ZnO photodetectors with high gain, Journal of Electronic Science and Technology 8(1), 2010: 55–59, DOI: 10.3969/j.issn.1674-862X.2010.01.012.
  • [6] SUNIL BABU EADI, HYUN-JIN SHIN, KIM THANH NGUYEN, KI-WOO SONG, HYUN-WOONG CHOI, SEONG-HYUN KIM, HI-DOEK LEE, Indium-gallium-zinc oxide (IGZO) thin-film gas sensors prepared via post-deposition high-pressure annealing for NO2 detection, Sensors and Actuators, B: Chemical 353, 2022: 131082, DOI: 10.1016/j.snb.2021.131082.
  • [7] SHISHIYANU S.T., SHISHIYANU T.S., LUPAN O.I., Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor, Sensors and Actuators, B: Chemical 107(1), 2005: 379–386, DOI: 10.1016/j.snb.2004.10.030.
  • [8] SUVACI E., ÖZER İ.Ö., Processing of textured zinc oxide varistors via templated grain growth, Journal of the European Ceramic Society 25(9), 2005: 1663–1673, DOI: 10.1016/j.jeurceramsoc.2004.05.026.
  • [9] MERON T., MARKOVICH G., Ferromagnetism in colloidal Mn2+-doped ZnO nanocrystals, The Journal of Physical Chemistry B 109(43), 2005: 20232–20236, DOI: 10.1021/jp0539775.
  • [10] YU H., MING H., GONG J., LI H., HUANG H., PAN K., LIU Y., KANG Z., WEI J., WANG D., Facile synthesis of Au/ZnO nanoparticles and their enhanced photocatalytic activity for hydroxylation of benzene, Bulletin of Materials Science 36(3), 2013: 367–372. https://www.ias.ac.in/article/fulltext/boms/036/03/0367-0372
  • [11] AHN J.S., LEE K.B., High-performance semitransparent a-InGaZnO4 thin-film transistors using thin Al electrodes, Journal of the Korean Physical Society 57(5), 2010: 1244–1247, DOI: 10.3938/jkps.57.1244.
  • [12] SAMARASEKARA P., WIJESINGHE U., JAYAWEERA E.N., Impedance and electrical properties of Cu doped ZnO thin films, GESJ 1(13), 2015: 512–1461.
  • [13] CHEBIL W., FOUZRI A., AZEZA B., SAKLY N., MGHAIETH R., LUSSON A., SALLET V., Comparison of ZnO thin films on different substrates obtained by sol-gel process and deposited by spin-coating technique, Indian Journal of Pure & Applied Physics 53(8), 2015: 521–529. http://op.niscair.res.in/index.php/IJPAP/article/view/7394
  • [14] FOO K.L., HASHIM U., VOON C.H., KASHIF M., Fabrication and characterization of ZnO thin films by sol-gel spin coating method for pH measurement, Advanced Materials Research, Vol. 1109, Trans Tech Publications, Ltd., June 2015: 99–103, DOI: 10.4028/www.scientific.net/AMR.1109.99.
  • [15] POKHAREL J., SHRESTHA M., ZHOU L.Q., NETO V., FAN Q.H., Oriented zinc oxide nanocrystalline thin films grown from sol–gel solution, Journal of Coating Science and Technology 2(2), 2015: 46–50, DOI: 10.6000/2369-3355.2015.02.02.2.
  • [16] SHAFURA A.K., MAMAT M.H., UZER M., SHUHAIMI A., SALMAN A., HASEEB A.K., RUSOP M., Sensing properties of nanostructured zinc oxide-based gas sensor fabricated using immersion method, [In] Proceedings of Malaysian International Tribology Conference, 2015: 306–307.
  • [17] TANG Z.K., WONG G.K.L., YU P., KAWASAKI M., OHTOMO A., KOINUMA H., SEGAWA Y., Room- temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Applied Physics Letters 72(25), 1998: 3270, DOI: 10.1063/1.121620.
  • [18] KHANLARY M.R., VAHEDI V., REYHANI A., Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures, Molecules 17(5), 2012: 5021–5029, DOI: 10.3390/molecules17055021.
  • [19] LU H., ZHAI X., LIU W., ZHANG M., GUO M., Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell, Thin Solid Films 586, 2015: 46–53, DOI: 10.1016/j.tsf.2015.04.056.
  • [20] KIM D.H., PARK J.H., LEE T.I., MYOUNG J.M., Superhydrophobic Al-doped ZnO nanorods-based electrically conductive and self-cleanable antireflecting window layer for thin film solar cell, Solar Energy Materials and Solar Cells 150, 2016: 65–70, DOI: 10.1016/j.solmat.2016.01.041.
  • [21] ABDEL-GALIL A., BALBOUL M.R., SHARAF A., Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors, Physica B: Condensed Matter 477, 2008: 20–28, DOI: 10.1016/j.physb.2015.08.001.
  • [22] KLINGSHIRN C., ZnO: material, physics and applications, ChemPhysChem 8(6), 2007: 782–803, DOI: 10.1002/cphc.200700002.
  • [23] ZHAO K., XIE J., ZHAO Y., HAN D., WANG Y., LIU B., DONG J., Investigation on transparent, conductive ZnO:Al films deposited by atomic layer deposition process, Nanomaterials 12(1), 2022: 172–178, DOI: 10.3390/nano12010172.
  • [24] MANDAL S., SINGHA R.K., DHAR A., RAY S.K., Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering, Materials Research Bulletin 43(2), 2008: 244–250, DOI: 10.1016/j.materresbull.2007.05.006.
  • [25] QIN Y., WANG X., WANG Z.L., Microfibre–nanowire hybrid structure for energy scavenging, Nature 451, 2008: 809–813, DOI: 10.1038/nature06601.
  • [26] HEO Y.W., NORTON D.P., PEARTON S.J., Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, Journal of Applied Physics 98(7), 2005: 73502, DOI: 10.1063/1.2064308.
  • [27] TAN S.T., CHEN B.J., SUN X.W., FAN W.J., KWOK H.S., ZHANG X.H., CHUA S.J., Blue shift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition, Journal of Applied Physics 98(1), 2005: 013505, DOI: 10.1063/1.1940137.
  • [28] GADALLAH A.S., NOMENYO K., COUTEAU C., ROGERS D.J., LÉRONDEL G., Stimulated emission from ZnO thin films with high optical gain and low loss, Applied Physics Letters 102(17), 2013: 171105, DOI: 10.1063/1.4803081.
  • [29] WANG Q.P., ZHANG X.J., WANG G.Q., CHEN S.H., WU X.H., MA H.L., Influence of excitation light wavelength on the photoluminescence properties for ZnO films prepared by magnetron sputtering, Applied Surface Science 254(16), 2008: 5100–5104, DOI: 10.1016/j.apsusc.2008.02.007.
  • [30] BADADHE S.S., MULLA I.S., Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis, Sensors and Actuators, B: Chemical 156(2), 2011: 943–948, DOI: 10.1016/j.snb.2011.03.010.
  • [31] KIM K.C., KIM E.K., KIM Y.S., Growth and physical properties of sol–gel derived Co doped ZnO thin film, Superlattices and Microstructures 42(1–6), 2007: 246–250, DOI: 10.1016/j.spmi.2007.04.062.
  • [32] MINN K., BIRMINGHAM B., KO B., LEE H.W.H., ZHANG Z., Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing, Photonics Research 9(2), 2021: 252–258, DOI: 10.1364/PRJ.411583.
  • [33] PALINSKI T.J., HUNTER G.W., TADIMETY A., ZHANG J.X.J., Metallic photonic crystal-based sensor for cryogenic environments, Optics Express 27(11), 2019: 16344–16359, DOI: 10.1364/OE.27.016344.
  • [34] THAPA K.B., SINGH S.K., OJHA S.P., Omnidirectional high reflector for infrared wavelength, International Journal of Infrared and Millimeter Waves 27(9), 2006: 1257–1268, DOI: 10.1007/s10762-006-9129-0.
  • [35] KESKINEN M.J., LOSCHIALPO P., FORESTER D., SCHELLENG J., Photonic band structure and transmissivity of frequency-dependent metallic-dielectric systems, Journal of Applied Physics 88(10), 2000:
  • [36] PARK J., MIN B., Spatiotemporal plane wave expansion method for arbitrary space–time periodic photonic media, Optics Letters 46(3), 2021: 484–487, DOI: 10.1364/OL.411622.
  • [37] MISSONI L.L., ORTIZ G.P., MARTÍNEZ RICCI M.L., TORANZOS V.J., MOCHÁN L., Rough 1D photonic crystals: A transfer matrix approach, Optical Materials 109, 2020: 110012, DOI: 10.1016/j.optmat.2020.110012.
  • [38] GAO Y., YE Q., ZHANG J., Research on the moving plasma photonic crystals based on the novel symplectic finite-difference time-domain method, Optik 218, 2020: 164972, DOI: 10.1016/j.ijleo.2020.164972.
  • [39] SHEN L., HE S., XIAO S., A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal, Computer Physics Communications 143(3), 2002: 213–221, DOI: 10.1016/S0010-4655(01)00456-8.
  • [40] BLABER M.G., ARNOLD M.D., FORD M.J., Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver, The Journal of Physical Chemistry C 113(8), 2009: 3041–3045, DOI: 10.1021/jp810808h.
  • [41] ORDAL M.A., BELL R.J., ALEXANDER R.W., LONG L.L., QUERRY M.R., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Applied Optics 24(24), 1985: 4493–4499, DOI: 10.1364/AO.24.004493.
  • [42] ZEMAN E.J., SCHATZ G.C., An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium, The Journal of Physical Chemistry 91(3), 1987: 634–643, DOI: 10.1021/j100287a028.
  • [43] HOOPER I.R., SAMBLES J.R., Dispersion of surface plasmon polaritons on short-pitch metal gratings, Physical Review B 65(16), 2002: 165432, DOI: 10.1103/PhysRevB.65.165432.
  • [44] MCPEAK K.M., JAYANTI S.V., KRESS S.J.P., MEYER S., IOTTI S., ROSSINELLI A., NORRIS D.J., Plasmonic films can easily be better: Rules and recipes, ACS Photonics 2(3), 2015: 326–333, DOI: 10.1021/ph5004237.
  • [45] SIGALAS M.M., CHAN C.T., HO K.M., SOUKOULIS C.M., Metallic photonic band-gap materials, Physical Review B 52(16), 1995: 11744–11751, DOI: 10.1103/PhysRevB.52.11744.
  • [46] YEH P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3db7010a-ff0f-4fdc-8111-5c854fdf7bf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.