PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties and Sliding Wear Resistance of Suspension Plasma Sprayed YSZ Coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the yttria stabilised zirconia ZrO2 + 8 wt% Y2 O3 (YSZ) coatings were studied. The coatings were manufactured by using a relatively new method based on liquid feedstock, called suspension plasma spraying (SPS). The main aim of the study was to investigate the influence of one of the fundamental process parameters, stand-off distance, on the YSZ coating mechanical properties, namely adhesion, cohesion, hardness, and dry sliding wear resistance. Moreover, the coating surface morphology and microstructure were investigated. Despite the fact that in the SPS method, the heat flux into the substrate is much higher than in conventional atmospheric plasma spraying (APS), for the stand-off distances as short as 40 mm, the structure has not been damaged by thermal stresses. The results revealed that shorter spray distance leads to obtaining the coatings characterised by higher cohesion and adhesion to the substrate as well as higher hardness and resistance to sliding wear. The wear mechanism of both YSZ coatings relies on the adhesive mode, which is intensified by severe coating material delamination.
Twórcy
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, Wrocław 50-371, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, Lublin 20-618, Poland
  • University of Occupational Safety Management in Katowice, Bankowa 8, 40-007 Katowice, Poland
  • University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
Bibliografia
  • 1. Pawlowski L. The Science and Engineering of Thermal Spray Coatings. 2nd Edition. Chichester, England ; Hoboken, NJ: Wiley; 2008. 656 p.
  • 2. Heimann RB. Plasma Spray Coating: Principles and Applications. 2nd Edition. Weinheim: WileyVCH; 2008. 449 p.
  • 3. Fauchais P, Montavon G, Bertrand G. From Powders to Thermally Sprayed Coatings. J Therm Spray Technol. 2010;19(1):56–80.
  • 4. Kiilakoski J, Langlade C, Koivuluoto H, Vuoristo P. Characterizing the micro-impact fatigue behavior of APS and HVOF-sprayed ceramic coatings. Surf Coat Technol. 2019;371:245–54.
  • 5. Alontseva D, Krasavin A, Prokhorenkova N, Kolesnikova T. Plasma-Assisted Automated Precision Deposition of Powder Coating Multifunctional Systems. Acta Phys Pol A. 2017;132(2):233–5.
  • 6. Gonzalez R, Ashrafizadeh H, Lopera A, Mertiny P, McDonald A. A Review of Thermal Spray Metallization of Polymer-Based Structures. J Therm Spray Technol. 2016;25(5):897–919.
  • 7. Maruszczyk A, Dudek A, Szala M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Adv Sci Technol Res J. 2017;11(3):204–10.
  • 8. Fauchais PL, Heberlein JVR, Boulos M. Thermal Spray Fundamentals: From Powder to Part. Springer US; 2014. 2481 p.
  • 9. Lima RS, Marple BR. Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review. J Therm Spray Technol. 2007;16(1):40–63.
  • 10. Gan JA, Berndt CC. Nanocomposite coatings: thermal spray processing, microstructure and performance. Int Mater Rev. 2015;60(4):195–244.
  • 11. Killinger A, Gadow R, Mauer G, Guignard A, Vaßen R, Stöver D. Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes. J Therm Spray Technol. 2011;20(4):677.
  • 12. Makhlouf A, Scharnweber D, redaktorzy. Handbook of Nanoceramic and Nanocomposite Coatings and Materials. 1st Edition. Amsterdam: Butterworth-Heinemann; 2015. 612 p.
  • 13. Pawlowski L. Finely grained nanometric and submicrometric coatings by thermal spraying: A review. Surf Coat Technol. 2008;202(18):4318–28.
  • 14. Fan W, Bai Y. Review of suspension and solution precursor plasma sprayed thermal barrier coatings. Ceram Int. 2016;42(13):14299–312.
  • 15. Gitzhofer F, Bouyer E, Boulos MI. Suspension plasma spray [Internet]. US5609921A, 1997.
  • 16. Łatka L. Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying - A Review. Adv Mater Sci. 2018;18(3):95–117.
  • 17. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P. Engineered thermal barrier coatings deposited by suspension plasma spray. Mater Lett. 2017;209:517–21.
  • 18. Łatka L, Cattini A, Chicot D, Pawłowski L, Kozerski S, Petit F, i in. Mechanical Properties of Yttriaand Ceria-Stabilized Zirconia Coatings Obtained by Suspension Plasma Spraying. J Therm Spray Technol. 2013;22(2):125–30.
  • 19. Oberste Berghaus J, Legoux JG, Moreau C, Hui R, Ghosh D. Suspension Plasma Spraying of Intermediate Temperature SOFC Components Using an Axial Injection DC Torch. Mater Sci Forum. 2007;539–543:1332–7.
  • 20. Waldbillig D, Kesler O. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes. J Power Sources. 2011; 196(13):5423–31.
  • 21. Ročňáková I, Slámečka K, Montufar EB, Remešová M, Dyčková L, Břínek A, i in. Deposition of hydroxyapatite and tricalcium phosphate coatings by suspension plasma spraying: Effects of torch speed. J Eur Ceram Soc. 2018;38(16):5489–96.
  • 22. Łatka L, Pawlowski L, Chicot D, Pierlot C, Petit F. Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surf Coat Technol. 2010;205(4):954–60.
  • 23. Michalak M, Latka L, Sokolowski P, Toma F-L, Myalska H, Denoirjean A, i in. Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and SHVOF methods. Surf Coat Technol. 2020;126463.
  • 24. Murray JW, Leva A, Joshi S, Hussain T. Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings. Ceram Int. 2018;44(7):8498–504.
  • 25. Kozerski S, Toma F-L, Pawlowski L, Leupolt B, Latka L, Berger L-M. Suspension plasma sprayed TiO2 coatings using different injectors and their photocatalytic properties. Surf Coat Technol. 2010;205(4):980–6.
  • 26. Robinson BW, Tighe CJ, Gruar RI, Mills A, Parkin IP, Tabecki AK, i in. Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J Mater Chem A. 2015;3(24):12680–9.
  • 27. Tarasi F, Alebrahim E, Dolatabadi A, Moreau C. A Comparative Study of YSZ Suspensions and Coatings. Coatings. 2019;9(3):188.
  • 28. Zhou D, Guillon O, Vaßen R. Development of YSZ Thermal Barrier Coatings Using Axial Suspension Plasma Spraying. Coatings. 2017;7(8):120.
  • 29. Caio F, Moreau C. Influence of Substrate Shape and Roughness on Coating Microstructure in Suspension Plasma Spray. Coatings. 2019;9(11):746.
  • 30. Macek W, Wołczański T. Analysis of fracture roughness parameters of S355J2 steel and EN AW-2017A-T4 aluminium alloy. ITM Web Conf. 2017;15:06002.
  • 31. Macek W, Branco R, Szala M, Marciniak Z, Ulewicz R, Sczygiol N, i in. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation. Materials. 2020;13(17):3691.
  • 32. ASTM C1624-05, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, ASTM International, 2010.
  • 33. ASTM G171-03, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, ASTM International, 2003.
  • 34. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res. 2004;19(1):3–20.
  • 35. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.
  • 36. Lancaster JK. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear. 1967;10(2):103–17.
  • 37. Kozerski S, Pawlowski L, Jaworski R, Roudet F, Petit F. Two zones microstructure of suspension plasma sprayed hydroxyapatite coatings. Surf Coat Technol. 2010;204(9):1380–7.
  • 38. Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol. 2013;220:131–9.
  • 39. Szala M, Łatka L, Walczak M, Winnicki M. Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3 and Cu/ Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass. Metals. 2020;10(7):856.
  • 40. Szala M, Walczak M, Łatka L, Gancarczyk K, Özkan D. Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying. Adv Mater Sci. 2020;20(2):26–38.
  • 41. Żebrowski R, Walczak M. Effect of the Shot Peening on Surface Properties and Tribological Performance of Ti-6Al-4V Alloy Produced by Means of DMLS Technology. Arch Metall Mater. 2019;64(1):377–83.
  • 42. Drozd K, Walczak M, Szala M, Gancarczyk K. Tribological behaviour of AlCrSiN-coated tool steel K340 versus popular tool steel grades. Materials. 2020;13:4895.
  • 43. Szala M, Dudek A, Maruszczyk A, Walczak M, Chmiel J, Kowal M. Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys Pol A. 2019;136(2):335–41.
  • 44. Michalak M, Latka L, Szala M, Walczak M, Sokolowski P, Ambroziak A. Investigations of TiO2 addition in alumina-titania APS sprayed coatings on sliding wear and cavitation erosion resistance. Surf Coat Technol. 2021:In print.
  • 45. Szala M, Szafran M, Macek W, Marchenko S, Hejwowski T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv Sci Technol Res J. 2019;13(4):151–161.
  • 46. Darut G, Ageorges H, Denoirjean A, Fauchais P. Tribological performances of YSZ composite coatings manufactured by suspension plasma spraying. Surf Coat Technol. 2013;217:172–80.
  • 47. Yan H, Zhao L, Chen Z, Hu X, Yan Z. Investigation of the Surface Properties and Wear Properties of AISI H11 Steel Treated by Auxiliary Heating Plasma Nitriding. Coatings. 2020;10(6):528.
  • 48. Stachowiak G, Batchelor AW. Engineering Tribology. 4 edition. Butterworth-Heinemann; 2016. 884 p.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3daf6fbd-9258-4d8c-8adf-8e10ded5a0a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.