PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ferritic/martensitic 9Cr-1Mo-V-Nb steel also designated as ASTM A335 used in construction of several components of power plants operating in temperature range of 600–650 °C. In present investigation, dissimilar weld joint of P91 and P92 steel were prepared using the autogenous tungsten inert gas (A-TIG) welding and multi-pass gas tungsten arc welding (GTAW) process. A comparative study was performed on evolution of δ-ferrite patches in weld fusion zone and heat affected zones (HAZs) of welded joints. The evolution of δ-ferrite patches was studied in as-welded and post-weld heat treatment (PWHT) condition. PWHT was carried out at 760 °C for tempering time of 2 h and 6 h, for both A-TIG and GTA weld joints. It was observed that presence of higher content of ferrite stabilizer in P92 steel promote the formation of δ-ferrite patches in weld fusion zone as well as HAZs. To study the effect of welding process and PWHT, Charpy V impact energy and microhardness tests were performed. For microstructure characterization, field-emission scanning electron microscope (FESEM) and optical microscope were utilized.
Słowa kluczowe
Rocznik
Strony
713--722
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
  • School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751013, India
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
autor
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
autor
  • Department of Mechanical Engineering, National Institute of Technology Raipur, Chhattisgarh 492010, India
Bibliografia
  • [1] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel, J. Nucl. Mater. 498C (2017) 176–186. , http://dx.doi.org/ 10.1016/j.jnucmat.2017.10.037.
  • [2] B. Silwal, L. Li, A. Deceuster, B. Griffiths, Effect of postweld heat treatment on the toughness of heat-affected zone for grade 91 steel, Weld. Res. 92 (2013) 80s–87s.
  • [3] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments, Mater. Sci. Eng. A 685 (2017) 39–49. , http:// dx.doi.org/10.1016/j.msea.2016.12.079.
  • [4] Vijaya L. Manugula, Koteswararao V. Rajulapati, G. Madhusudhan Reddy, K. Bhanu, Sankara Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic–martensitic steel in the as-welded and post weld heat-treated states, Mater. Sci. Eng. A 698 (2017) 36–45. , http://dx.doi.org/10.1016/j.msea.2017.05.036.
  • [5] C. Pandey, M. Mohan, P. Kumar, N. Saini, Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on d-ferrite evolution and mechanical properties, J. Manuf. Process. 31 (2018) 247–259. , http://dx.doi.org/10.1016/j.jmapro.2017.11.020.
  • [6] M.L. Santella, R.W. Swindeman, R.W. Reed, J.M. Tanzosh, Martensite formation in 9Cr–1Mo steel weld metal and its effect on creep behavior, n.d.
  • [7] B. Arivazhagan, R. Prabhu, S.K. Albert, M. Kamaraj, S. Sundaresan, Microstructure and mechanical properties of 9Cr–1Mo steel weld fusion zones as a function of weld metal composition, J. Mater. Eng. Perform. 18 (2009) 999–1004. , http://dx.doi.org/10.1007/s11665-008-9349-7.
  • [8] C. Pandey, M.M. Mahapatra, Effect of heat treatment on microstructure and hot impact toughness of various zones of P91 welded pipes, J. Mater. Eng. Perform. 25 (2016) 2195–2210. , http://dx.doi.org/10.1007/s11665-016-2064-x.
  • [9] L. Schafer, Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel, J. Nucl. Mater. 263 (1998) 1336–1339.
  • [10] R.G. Faulkner, J.A. Williams, E.G. Sanchez, A.W. Marshall, Influence of Co, Cu and W on Microstructure of 9% Cr Steel Weld Metals, vol. 19, 2003, http://dx.doi.org/10.1179/ 026708303225009652.
  • [11] K.S. Chandravathi, K. Laha, K.B.S. Rao, S.L. Mannan, Microstructure and tensile properties of modified 9Cr–1Mo steel (grade 91), Mater. Sci. Technol. 17 (2001) 559–565.
  • [12] P.J. Grobenr, W.C. Hagel, The effect of molybdenum on high-temperature properties of 9 Pct Cr steels, Metall. Trans. A 11A (1980) 633–642.
  • [13] K. Anderko, L. Sch, A.K. Ewaiom, Effect of the d-ferrite phase on the impact properties chromium steels, J. Nucl. Mater. 179–181 (1991) 492–495.
  • [14] X.Y. Liu, T. Fujita, Chromium chromium, ISIJ Int. 29 (1989) 680–686.
  • [15] E.D. Specht, S.M. Allen, Communication Cr Steel Investigated by In-Situ X-Ray Radiation, 2010, 2–5. , http://dx.doi.org/ 10.1007/s11661-010-0371-7.
  • [16] X. Tao, J. Gu, L. Han, Characterization of precipitates in X12CrMoWVNbN10-1-1 steel during heat treatment, J. Nucl. Mater. 452 (2014) 557–564. , http://dx.doi.org/10.1016/ j.jnucmat.2014.06.018.
  • [17] C. Pandey, A. Giri, M.M. Mahapatra, Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties, Mater. Sci. Eng. A 664 (2016) 58–74. , http://dx.doi.org/10.1016/ j.msea.2016.03.132.
  • [18] C. Pandey, M. Mahapatra, Evolution of phases during tempering of P91 steel at 760 for varying tempering time and their effect on microstructure and mechanical properties, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 664 (2016) 58–74. , http://dx.doi.org/10.1177/0954408916656678.
  • [19] N. Saini, C. Pandey, M.M. Mahapatra, Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature, Mater. Sci. Eng. A (2017), http://dx.doi.org/10.1016/j.msea.2017.02.022.
  • [20] N. Saini, C. Pandey, M. Mohan, Microstructure evolution and mechanical properties of dissimilar welded joint of P911 and P92 steel for subsequent PWHT and N&T treatment, Trans. Indian Inst. Met. (2017), http://dx.doi.org/10.1007/s12666-017-1145-3.
  • [21] C.G. Panait, A. Zielinska-Lipiec, T. Koziel, A. Czyrska- filemonowicz, A.F. Gourgues-Lorenzon, W. Bendick, Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600 8C for more than 100,000 h, Mater. Sci. Eng. A 527 (2010) 4062–4069. , http://dx.doi.org/10.1016/j.msea.2010.03.010.
  • [22] C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, A. Srivastava, Microstructure-based assessment of creep rupture behaviour of cast-forged, Mater. Sci. Eng. A 695 (2017) 291–301. , http://dx.doi.org/10.1016/j.msea.2017.04.037.
  • [23] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Characterization of cast and forged (C&F) Gr. 91 steel in different heat treatment condition, Trans. Indian Inst. Met. (2017), http://dx.doi.org/ 10.1007/s12666-017-1144-4.
  • [24] C. Pandey, M.M. Mahapatra, P. Kumar, A. Giri, Microstructure characterization and Charpy toughness of P91 weldment for as-welded, PWHT and N&T heat treatment, Met. Mater. Int. (2017), http://dx.doi.org/10.1007/s12540-017-6850-2.
  • [25] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Homogenization of P91 weldments using varying normalizing and tempering treatment, Mater. Sci. Eng. A 710 (2018) 86–101. , http://dx.doi.org/ 10.1016/j.msea.2017.10.086.
  • [26] S.W. Shyu, H.Y. Huang, K.H. Tseng, C.P. Chou, Study of the performance of stainless steel A-TIG welds, J. Mater. Eng. Perform. 17 (2008) 193–201. , http://dx.doi.org/10.1007/s11665- 007-9139-7.
  • [27] J. Onoro, Martensite microstructure of 9–12% Cr steels weld metals, J. Mater. Process. Technol. 180 (2006) 137–142. , http:// dx.doi.org/10.1016/j.jmatprotec.2006.05.014.
  • [28] T. Onizawa, T. Wakai, M. Ando, K. Aoto, Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel, Nucl. Eng. Des. 238 (2008) 408–416. , http://dx.doi.org/ 10.1016/j.nucengdes.2006.09.013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dac38cc-9818-4429-a265-7df73e9f934d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.