Identyfikatory
Warianty tytułu
HAARP – a unique facility for geophysical research
Języki publikacji
Abstrakty
W artykule zaprezentowano informacje o amerykańskiej stacji HAARP na Alasce i opisano główne eksperymenty tam przeprowadzone. Stacja jest unikalna, bo posiada dużą moc promieniowania w wysokich częstotliwościach w pasmie HF (2,75-9 MHz), co pozwala na ciekawe badania nad zjawiskami w jonosferze, jak i w magnetosferze. W ostatnich latach stacja przeszła pod zarząd University of Alaska i jest dostępna dla naukowców z całego świata.
We present details of the American geophysical research facility in Alaska known as HAARP and summarize the main experiments that have been carried out therein. The facility is unique due to the high power available for radiation in the HF band (2.75-9 MHz), which enables the investigation of processes in the ionosphere and magnetosphere. In the last few years the facility has come under the administration of the University of Alaska and is now open to international researchers.
Czasopismo
Rocznik
Tom
Strony
287--302
Opis fizyczny
Bibliogr. 40 poz., fot., rys., wykr.
Twórcy
autor
- University of Colorado Denver, Department of Electrical Engineering
Bibliografia
- [1] Ashrafi M., Kosch M. J., Kaila K., Isham B., 2007, Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic, Journal of Geophysical Research – Space Physics, 112 (A5), DOI: 10.1029/2006JA011938.
- [2] Barr R., Stubbe P., 1991, ELF radiation from the Tromsø “super heater” facility, Geophysical Research Letters, 18 (6), 1035-1038, DOI: 10.1029/91GL01156.
- [3] Belikovich V. V., Grach S. M., Karashtin A. N., Kotik D. S., Tokarev Y. V., 2007, The “Sura” facility: study of the atmosphere and space (a review), 50 (7), 497-526, DOI: 10.1007/s11141-007-0046-4.
- [4] Carlsten B. E., Colestock P. L., Cunningham G. S., Delzanno G. L., Dors E. E., Holloway M. A., Reeves G. D., 2019, Radiation-belt remediation using space-based atennas and electron beams, IEEE Transactions on Plasma Science, 47 (5), 2045-2063, DOI: 10.1109/TPS.2019.2910829.
- [5] Cohen M. B., Gołkowski M., 2013, 100 days of ELF/VLF generation via HF heating with HAARP, Journal of Geophysical Research – Space Physics, 118 (10), 6597-6607, DOI: 10.1002/jgra.50558.
- [6] Cohen M. B., Gołkowski M., Inan U. S., 2008a, Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet, Geophysical Research Letters, 35 (2), DOI: 10.1029/2007GL032424.
- [7] Cohen M. B., Gołkowski M., Lehtinen N. G., Inan U. S., McCarrick M. J., 2012, HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere, Journal of Geophysical Research – Space Physics, 117 (A5), DOI: 10.1029/2012JA017585.
- [8] Cohen M. B., Inan U. S., Gołkowski M. A., 2008b, Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere, Geophysical Research Letters, 35 (12), DOI: 1029/2008GL034061.
- [9] Getmantsev G G., Zuikov N. A., Kotik D. S., Mironenko L. F., Mitiakov N. A., Rapoport V. O., Eidman V. I., 1974, Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma, ZhETF Pisma Redaktsiiu, 20, 229-232.
- [10] Gołkowski M., Cohen M. B., Carpenter D. L., Inan U. S., 2011, On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility, Journal of Geophysical Research – Space Physics, 116 (A4), DOI: 10.1029/2010JA016261.
- [11] Gołkowski M., Gibby A. R., 2017, On the conditions for nonlinear growth in magnetospheric chorus and triggered emissions, Physics of Plasmas, 24 (9), DOI: 10.1063/1.4986225.
- [12] Gołkowski M., Harid V., Hosseini P., 2019, Review of controlled excitation of nonlinear wave-particle interactions in the magnetosphere, Frontiers in Astronomy and Space Sciences, 6 (2), DOI: 10.3389/fspas.2019.00002.
- [13] Gołkowski M., Inan U. S., Gibby A. R., Cohen M. B., 2008, Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, Journal of Geophysical Research – Space Physics, 113 (A10), DOI: 10.1029/2008JA013157.
- [14] Greenwald R. A., Baker K. B., Dudeney J. R., Pinnock M., Jones T. B., Thomas E. C., Villain J.-P., Cerisier J.-C., Senior C., Hanuise C., Hunsucker R. D., Sofko G., Koehler J., Nielsen E., Pellinen R., Walker A. D. M., Sato N., Yamagishi H., 1995, DARN/SuperDARN. A global view of the dynamics of high-latitutde convection, Space Science Reviews, 71 (1-4), 761-796, DOI: 10.1007/BF00751350.
- [15] Gurevich A. V., 2007, Nonlinear effects in the ionosphere, Physics-Uspekhi, 50 (11), DOI: 10.1070/PU2007v050n11ABEH006212.
- [16] Helliwell R. A., 1988, VLF wave stimulation experiments in the magnetosphere from Siple Station, Antarctica, Reviews of Geophysics, 26 (3), 551-578, DOI: 10.1029/RG026i003p00551.
- [17] Hosseini P., Gołkowski M., Turner D. L., 2017, Unique concurrent observations of whistler mode hiss, chorus, and triggered emissions, Journal of Geophysical Research – Space Physics, 122 (6), 6271-6282, DOI: 10.1002/2017JA024072.
- [18] Inan U. S., Bell T. F., Bortnik J., Albert J. M., 2003, Controlled precipitation of radiation belt electrons, Journal of Geophysical Research – Space Physics, 108 (A5), DOI: 10.1029/2002JA009580.
- [19] Isham B., Rietveld M. T., Hagfors T., La Hoz C., Mishin E., Kofman W., Leyser T. B., van Eyken A. P., 1999, Aspect angle dependence of HF enhanced incoherent backscatter, Advances in Space Research, 24 (8), 1003-1006, DOI: 10.1016/S0273-1177(99)00555-4.
- [20] Jin G., Spasojevic M., Cohen M. B., Inan U. S., Lehtinen N. G., 2011, The relationship between geophysical conditions and ELF amplitude in modulated heating experiments at HAARP: Modeling and experimental results, Journal of Geophysical Research – Space Physics, 116 (A7), DOI: 10.1029/2011JA016664.
- [21] Kosch M. J., Pedersen T., Rietveld M. T., Gustavsson B., Grach S. M., Hagfors T., 2007, Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review, Advances in Space Research, 40 (3), 365-376, DOI: 10.1016/j.asr.2007.02.061.
- [22] Kosch M. J., Rietveld M. T., Kavanagh A. J., Davis C., Yeoman T. K., Honary F., Hagfors T., 2002, High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic, Geophysical Research Letters, 29 (23), DOI: 10.1029/2002GL015744.
- [23] Maxworth A. S., Gołkowski M., Cohen M. B., Moore R. C., Chorsi H. T., Gedney S. D., Jacobs R., 2015, Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation, Radio Science, 50 (10), 1008-1026, DOI: 10.1002/2015RS005683.
- [24] McIlwain C. E., 1961, Coordinates for mapping the distribution of magnetically trapped particles, Journal of Geophysical Research, 66 (11), 3681-3691, DOI: 10.1029/JZ066i011p03681.
- [25] Mishin E., Pedersen T., 2011, Ionizing wave via high-power HF acceleration, Geophysical Research Letters, 38 (1), DOI: 10.1029/2010GL046045.
- [26] Moore R. C., Inan U. S., Bell T. F., Kennedy E. J., 2007, ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ~4400 km, Journal of Geophysical Research – Space Physics, 112 (A5), DOI: 10.1029/2006JA012063.
- [27] Odzimek A. W., 2019, Obszary polarne w badaniach Globalnego Atmosferycznego Obwodu Elektrycznego Ziemi, Przegląd Geofizyczny, 64 (1-2), 35-70, DOI: 10.32045/PG-2019-002.
- [28] Omura Y., Nunn D., Matsumoto H., Rycroft M. J., 1991, A review of observational, theoretical and numerical studies of VLF triggered emissions, Journal of Atmospheric and Terrestrial Physics, 53 (5), 351-368, DOI: 10.1016/0021-9169(91)90031-2.
- [29] Pedersen T. R., Gerken E. A., 2005, Creation of visible artificial optical emissions in the aurora by high-power radio waves, Nature, 433 (7025), 498-500, DOI: 10.1038/nature03243.
- [30] Pedersen T., Gustavsson B., Mishin E., Kendall E., Mills T., Carlson H. C., Snyder A. L., 2010, Creation of artificial ionospheric layers using high‐power HF waves, Geophysical Research Letters, 37 (2), DOI: 10.1029/2009GL041895.
- [31] Popielawska B., 2002, Pogoda kosmiczna – bardzo przyziemna sprawa, Publications of the Institute of Geophysics, Polish Academy of Sciences: Miscellanea Series, M-25 (347), 305-319.
- [32] Rietveld M. T., Senior A., Markkanen J., Westman A., 2016, New capabilities of the upgraded EISCAT high-power HF facility, Radio Science, 51 (9), 1533-1546, DOI: 10.1002/2016RS006093.
- [33] Robinson T. R., 1989, The heating of the high lattitude ionosphere by high power radio waves, Physics Reports, 179 (2-3), 79-209, DOI: 10.1016/0370-1573(89)90005-7.
- [34] Sergeev E. N., Frolov V. L., Grach S. M., Kotov P. V., 2006, On the morphology of stimulated electromagnetic emission spectra in a wide pump wave frequency range, Advances in Space Research, 38 (11), 2518-2526, DOI: 10.1016/j.asr.2005.02.046.
- [35] Sergeev E., Grach S., Shindin A., Mishin E., Bernhardt P., Briczinski S., Watkins B., 2013, Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP, Physical Review Letters, 110 (6), DOI: 10.1103/PhysRevLett.110.065002.
- [36] Streltsov A. V., Berthelier J. J., Chernyshov A. A., Frolov V. L., Honary F., Kosch M. J., Rietveld M. T., 2018, Past, present and future of active radio frequency experiments in space, Space Science Reviews, 214 (8), DOI: 10.1007/s11214-018-0549-7.
- [37] Stubbe P., Kopka H., Rietveld M. T., Dowden R. L., 1982, ELF and VLF wave generation by modulated HF heating of the current carrying lower ionosphere, Journal of Atmospheric and Terrestrial Physics, 44 (12), 1123-1135, DOI: 10.1016/0021-9169(82)90023-X.
- [38] Thidé B., Kopka H., Stubbe P., 1982, Observations of stimulated scattering of a strong high-frequency radio wave in the ionosphere, Physical Review Letters, 49 (21), DOI: 10.1103/PhysRevLett.49.1561.
- [39] Watanabe N., Gołkowski M., Sheerin J. P., Watkins B. J., 2015, Simultaneous multi-angle observations of Strong Langmuir Turbulence at HAARP, Earth, Moon, and Planets, 116 (1,), 89-100, DOI: 10.1007/s11038-015-9471-0.
- [40] Wright D. M., Davies J. A., Robinson T. R., Chapman P. J., Yeoman T. K., Thomas E. C., Lester M., Cowley S. W. H., Stocker A. J., Horne R. B., Honary F., 2000, Space Plasma Exploration by Active Radar (SPEAR): an overview of a future radar facility, Annales Geophysicae, 18 (9), 1248-1255, DOI: 10.1007/s00585-000-1248-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3dab897d-f015-4406-829e-cb788fc18e7f