PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Past and future changes in the start, end, and duration of the growing season in Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the direction and rate of the projected changes of the start, end, and duration of the growing season in Poland in two-time horizons: 2021-2050 and 2071-2100. The main part of the paper was preceded by an analysis of changes in the start and end dates and the duration of the growing season in Poland in the period 1966-2020. The growing season in Poland is projected to be the shortest in mountain areas and in the north-eastern regions of Poland, where the date of growing season start is the latest and the date of the growing season end is the earliest. Whereas the longest growing season due to the projected earliest start and latest end dates is expected in the southwestern Poland. In the case of the coast, its late end will be of the greatest importance for its duration as a result of the warming effect of the sea in the autumn–winter period. The most intensive changes are forecasted in the long-term perspective in the case of the scenario regarding a high level of greenhouse gas emissions. The forecasts show that outside mountain areas, the growing season duration will vary from less than 255 days in the northeastern regions to more than 290 days in southwest and western Poland. In the duration of the mountains, the growing season will vary from 180 days on Kasprowy Wierch to 188 days on Śnieżka. This suggests significant changes in agroclimatic conditions in Poland.
Czasopismo
Rocznik
Strony
3041--3055
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
  • Department of Meteorology and Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680, Poznań, Poland
  • Department of Meteorology and Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680, Poznań, Poland
  • Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences, Warsaw, Poland
Bibliografia
  • 1. Alcamo J, Moreno JM, Nova´ky B et al (2007) Europe. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • 2. Alexandrov V, Eitzinger J, Cajic V, Oberforster M (2002) Potential impact of climate change on selected agricultural crops in north-eastern Austria. Glob Change Biol 8:372–389
  • 3. Audsley E, Pearn KR, Simota C, Cojocaru G, Koutsidou E, Rounsevell MDA, Trnka M, Alexandrov V (2006) What can scenario modelling tell us about future European scale agricultural land use, and what not? Environ Sci Pol 9:148–162
  • 4. Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM, Ciais P, Piao S, Tucker C (2013) Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob Chang Biol 19(10):3167–3183. https://doi.org/10.1111/gcb.12283
  • 5. Bartoszek K, Siłuch M (2015) Porównanie metody Gumińskiego i teledetekcji satelitarnej w aspekcie wyznaczania dat początku okresu wegetacyjnego na obszarze Polski [Comparison of Gumiński and satellite remote sensing methods in terms of determining the dates of the onset of the growing season in Poland]. Inżynieria Ekologiczna 45:99–105 (in Polish)
  • 6. Bochenek W, Dedo J, Marczewski W (2013) Zróżnicowanie długości i warunków termicznych okresu wegetacyjnego na obszarze Beskidów i Pogórzy w latach 2001–2011 na podstawie danych zgromadzonych w bazie GLDAS [Differentiation of duration and thermal conditions of the vegetation season in the Beskid Mts. and Carpathian Foothill on the gldas database in the period 2001–2011]. Monit Śr Prz 14:79–85 (in Polish)
  • 7. Bootsma A (1994) Long term (100 yr) climatic trends for agriculture at selected locations in Canada. Clim Chang 26:65–88
  • 8. Brázdil R, Možný M, Klír T, Řecničková L, Trnka M, Dobrovolný P, Kotyza O (2019) Climate variability and changes in the agricultural cycle in the czech lands from the sixteenth century to the present. Theor Appl Climatol 136:553–573. https://doi.org/10.1007/s00704-018-2508-3
  • 9. Carter TR (1998) Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric Food Sci Finl 7:161–179
  • 10. Ceglar A, Zampieri M, Toreti A, Dentener F (2019) Observed northward migration of agroclimate zones in Europe will further accelerate under climate change. Earths Futur 7:1088–1101
  • 11. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric Forest Meteorol 108:101–112
  • 12. Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264. https://doi.org/10.3354/cr019257
  • 13. Chmielewski FM, Muller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric for Meteorol 121:69–78. https://doi.org/10.1016/S0168-1923(03)00161-8
  • 14. Cui L, Shi J (2021) Evaluation and comparison of growing season metrics in arid and semi-arid areas of northern China under climate change. Ecol Indicat 121:107055. https://doi.org/10.1016/j.ecolind.2020.107055
  • 15. Cui L, Shi J, Ma Y, Du H (2017) Distribution and trend in the thermal growing season in China during 1961–2015. Phys Geogr 38(6):1–18. https://doi.org/10.1080/02723646.2017.1344497
  • 16. Duarte L, Teodoro AC, Monteiro AT, Cunha M, Gonçalvese H (2018) QPhenoMetrics: an open source software application to assess vegetation phenology metrics. Comput Electron Agric 148:82–94. https://doi.org/10.1016/j.compag.2018.03.007
  • 17. Easterling WE, Aggarwal PK, Batima P et al (2007) Food, fibre and forest products. Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313
  • 18. EEA (2005) Vulnerability and adaptation to climate change in Europe. Technical report No 7/2005. ISSN 1725-2237
  • 19. Eitzinger J, Trnka M, Semerádová D, Thaler S, Svobodová E, Hlavinka P, Šiška B, Takáč J, Malatinská L, Nováková M, Dubrovský M, Žalud Z (2013) Regional climate change impacts on agricultural crop production in Central and Eastern Europe—hotspots, regional differences and common trends. J Agric Sci 151:787–812. https://doi.org/10.1017/S0021859612000767
  • 20. FAO (2015) Climate change and food systems: global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations, Rome
  • 21. Førland EJ, Skaugen TE, Benestad RE, Hanssen-Bauer I, Tveito OE (2004) Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct Antarct Alp Res 36:347–356
  • 22. Giannakopoulos C, Bindi M, Moriondo M, LeSager P, Tin T (2005) Climate change impacts in the mediterranean resulting from a 2 °C global temperature rise. In: WWF report, Gland Switzerland
  • 23. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104
  • 24. Graczyk D, Kundzewicz ZW (2016) Changes of temperature related agroclimatic indices in Poland. Theor Appl Climatol 124(1–2):401–410. https://doi.org/10.1007/s00704-015-1429-7
  • 25. Graczyk D, Pińskwar I, Choryński A (2021) Projected changes in thermal indices related to the agriculture and energy sectors. In: Falarz M. (ed) Climate change in Poland. Past, present, future. Springer, pp 545–558.
  • 26. Gumiński R (1948) Próba wydzielenia dzielnic rolniczo-klimatycznych w Polsce [An attempt to separate agricultural and climatic districts in Poland]. Przegląd Meteorologiczno-Hydrologiczny 1:7–20. (in Polish)
  • 27. IPCC (2021) Summary for Policymakers. In: Climate change 2021 the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (ed)]. (in Press)
  • 28. Irannezhad M, Kløve B (2015) Do atmospheric teleconnection patterns explain variations and trends in thermal growing season parameters in Finland? Int J Climatol 35(15):4619–4630. https://doi.org/10.1002/joc.4311
  • 29. Jaggard KW, A QI, Semenov MA (2007) The impact of climate change on sugarbeet yield in the UK: 1976–2004. J Agri Sci 145:367–375
  • 30. Jeong SJ, Ho CH, Gim HJ, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperature vegetation over the Northern Hemisphere for the period 1982–2008. Glob Chang Biol 17:2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x
  • 31. Jiao W, Wang L, Smith WK, Chang Q, Wang H, D’Odorico P (2021) Observed increasing water constraint on vegetation growth over the last three decades. Nat Commun 12:3777. https://doi.org/10.1038/s41467-021-24016-9
  • 32. Karing P, Kallis A, Tooming H (1999) Adaptation principles of agriculture to climate change. Clim Res 12:175–183
  • 33. Kaszewski BM (2000) Ekstremalne temperatury powietrza w okresie wegetacyjnym na Lubelszczyznie (1951–1990) [Extreme air temperatures during the vegetation season in the Lublin region (1951–1990)]. Acta Agrophys 34:79–88 (in Polish)
  • 34. Kępińska-Kasprzak M, Mager P (2015) Thermal growing season in Poland calculated by two different methods. Ann Wars Agric Univ Land Reclam 47(3):261–273
  • 35. Kolářová E, Nekovář J, Adamík P (2014) Long-term temporal changes in central European tree phenology (1946–2010) confirm the recent extension of growing seasons. Int J Biometeorol 58(8):1739–1748. https://doi.org/10.1007/s00484-013-0779-z
  • 36. Koźmiński C, Nidzgorska-Lencewicz J, Mąkosza A, Michalska B (2021) Ground frosts in poland in the growing season. Agriculture 11(7):573. https://doi.org/10.3390/agriculture11070573
  • 37. Krużel J, Ziernicka-Wojtaszek A, Ostrowski K (2015) Zmiany czasu trwania meteorologicznego okresu wegetacyjnego w Polsce w latach 1971–2000 oraz 1981–2010 [The changes in the duration of the meteorological vegetation period in Poland in the years 1971–2000 and 1981–2010]. Inż Ekol 44:47–52 (in Polish)
  • 38. Kundzewicz ZW, Piniewski M, Mezghani A et al (2018) Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys 66:1509–1523. https://doi.org/10.1007/s11600-018-0220-4
  • 39. Linderholm HW (2006) Growing season changes in the last century. Agric for Meteorol 137(1):1–14. https://doi.org/10.1016/j.agrformet.2006.03.006
  • 40. Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the greater baltic area. Clim Change 87:405–419. https://doi.org/10.1007/s10584-007-9327-3
  • 41. Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Chang 78:445–478. https://doi.org/10.1007/s10584-005-9042-x
  • 42. Marcinkowski P, Piniewski M (2018) Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. Int Agrophys 32:265–271. https://doi.org/10.1515/intag-2017-0015
  • 43. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81. https://doi.org/10.1007/s004840000054
  • 44. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659–659. https://doi.org/10.1038/17709
  • 45. Mezghani A, Dobler A, Haugen JE, Benestad RE, Parding KM, Piniewski M, Kardel I, Kundzewicz ZW (2017) CHASE-PL climate projection dataset over Poland–bias adjustment of EURO-CORDEX simulations. Earth Syst Sci Data 9(2):905–925. https://doi.org/10.5194/essd-9-905-2017
  • 46. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756
  • 47. Nieróbca A, Kozyra J, Mizak K, Wróblewska E (2013) Zmiana długości okresu wegetacyjnego w Polsce [changing length of the growing season in Poland]. Woda Śr Obsz Wiej 13(2):81–94 (in Polish)
  • 48. Olesen JE, Carter TR, Díaz-Ambrona CH, Fronzek S, Heidmann T, Hickler TR, Holt T, Minguez MI, Morales P, Palutikof JP, Quemada M, Ruiz-Ramos M, Rubæk GH, Sau F, Smith B, Sykes MT (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81:123–143. https://doi.org/10.1007/s10584-006-9216-1
  • 49. Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Europ J Agron 34(2):96–112. https://doi.org/10.1016/j.eja.2010.11.003
  • 50. Peltonen-Sainio P, Jauhiainen L (2020) Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland. Reg Environ Chang 20:89. https://doi.org/10.1007/s10113-020-01682-x
  • 51. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975
  • 52. Peng D, Wu C, Li C, Zhang X, Liu Z, Ye H, Luo S, Liu X, Hu Y, Fang B (2017) Spring green-up phenology products derived from MODIS NDVI and EVI: intercomparison, interpretation and validation using national phenology network and ameriflux observations. Ecol Indic 77:323–336. https://doi.org/10.1016/j.ecolind.2017.02.024
  • 53. Piniewski M, Marcinkowski P, O’Keeffe J, Szcześniak M, Nieróbca A, Kozyra J, Kundzewicz Z, Okruszko T (2020) Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland. Theor Appl Climatol 140:691–708. https://doi.org/10.1007/s00704-020-03106-6
  • 54. Pińskwar I (2010) Projekcje zmian w ekstremach opadowych w Polsce. Komitet Gospodarki Wodnej PAN, Warszawa, p 32 (in Polish)
  • 55. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. In: IPCC. (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, New York, pp 485–533
  • 56. Qian B, Gameda S (2010) Canadian agroclimatic scenarios projected from a global climate model. In: 90th American meteorological society annual meeting, Atlanta, pp 17–21. Accessed from. at ams.confex.com/ams/pdfpapers/165170.pdf
  • 57. Radzka E (2014a) Ciągi dni bezopadowych w okresie wegetacyjnym w środkowo-wschodniej Polsce (1971–2005) [Periods of days without precipitation during the growing season in central-eastern Poland (1971–2005)]. Acta Agrophys 21(4):483–491 (in Polish)
  • 58. Radzka E (2014b) Tendencje zmian temperatury powietrza okresu wegetacyjnego w środkowo-wschodniej Polsce (1971–2005) [Tendencies of air temperature changes of vegetation period in central-eastern Poland (in years 1971–2005)]. Acta Agrophys 21(1):87–96 (in Polish)
  • 59. Reddy KR, Hodges HF (2000) Climate change and global crop productivity. CABI Publishing, Oxon, p 488
  • 60. Ruosteenoja K, Räisänen J, Pirinena P (2011) Projected changes in thermal seasons and the growing season in Finland. Int J Climatol 31:1473–1487. https://doi.org/10.1002/joc.2171
  • 61. Ruosteenoja K, Markkanen T, Räisänen J (2020) Thermal seasons in northern Europe in projected future climate. Int J Climatol 40:4444–4462. https://doi.org/10.1002/joc.6466
  • 62. Rykaczewska K (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res 92:339–349
  • 63. Saue T, Karemaa K (2015) Lengthening of the thermal growing season due climate change in Estonia. In: Šiška et al. (eds) Towards climatic services, Nitra
  • 64. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern hemisphere. Glob Chang Biol 12:343–351
  • 65. Skaugen TE, Tveito OE (2004) Growing-season and degree-day scenario in Norway for 2021–2050. Clim Res 26(3):221–232. https://doi.org/10.3354/cr026221
  • 66. Skowera B, Kopeć B (2008) Okresy termiczne w Polsce południowowschodniej (1971–2000) [thermal periods in south-eastern part of poland (1971–2000)]. Acta Agrophys 12(2):517–526 (in Polish)
  • 67. Song Y, Linderholm HW, Chen D, Walther A (2010) Trends of the thermal growing season in China. 1951–2007. Int J Climatol 30:33–43. https://doi.org/10.1002/joc.1868
  • 68. Szwed M, Karg G, Pińskwar I, Radziejewski M, Graczyk D, Kędziora A, Kundzewicz ZW (2010) Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat Hazards Earth Syst Sci 10(8):1725–1737
  • 69. Szwejkowski Z, Kuchar L, Dragańska E, Cymes I, Cymes I (2017) Current and future agroclimate conditions in Poland in perspective of climate change. Acta Agrophys 24(2):355–364
  • 70. Szyga-Pluta K (2011) Termiczne pory roku w Poznaniu w latach 2001–2008 [thermal seasons in Poznań in the period 2001–2008]. Prz Geogr 83(1):109–119 (in Polish)
  • 71. Szyga-Pluta K (2022) Assessment of changing agroclimatic conditions in Poland based on selected indicators. Atmosphere 13(8):1232. https://doi.org/10.3390/atmos13081232
  • 72. Szyga-Pluta K, Tomczyk AM, Bednorz E, Piotrowicz K (2022) Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theor Appl Climatol 149:1785–1800. https://doi.org/10.1007/s00704-022-04141-1
  • 73. Szyga-Pluta K, Tomczyk AM, Bednorz E, Piotrowicz K (2023) Patterns in the multiannual course of growing season in Central Europe since the end of the 19th century. Quaestiones Geographicae 42(1):59–74. https://doi.org/10.14746/quageo-2023-0005
  • 74. Tarand A, Jaagus J, Kallis A (2013) Eesti kliima minevikus ja tänapäeval [Estonian Climate in the Past and Present]. Tartu Ülikooli Kirjastus, Tartu, pp 631
  • 75. Tomczyk AM, Szyga-Pluta K (2016) Okres wegetacyjny w Polsce w latach 1971–2010 [growing seasons in Poland in the period 1971–2010]. Prz Geogr 88(1):75–86 ((in Polish))
  • 76. Tomczyk AM, Szyga-Pluta K (2019) Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor Appl Climatol 135(3–4):1517–1530. https://doi.org/10.1007/s00704-018-2450-4
  • 77. Trnka M, Eitzinger J, Semerádová D, Hlavinka P, Balek J, Dubrovský M, Kubu G, Štěpánek P, Thaler S, Možný M, Žalud Z (2011) Expected changes in agroclimatic conditions in Central Europe. Clim Chang 108:261–289. https://doi.org/10.1007/s10584-011-0025-9
  • 78. Vega AJ, Rohli RV, Wright E (2020) Changes in growing season in the Northeastern United States. Phys Geogr 41(4):343–364. https://doi.org/10.1080/02723646.2019.1672023
  • 79. Walther A, Linderholm HW (2006) A comparison of growing season indices for the greater baltic area. Int J Biometeorol 51(2):107–118. https://doi.org/10.1007/s00484-006-0048-5
  • 80. Wibig J (2020) Współczesne zmiany klimatu–obserwacje, przyczyny, prognozy. In: Prandecki K, Burchard-Dziubińska M (ed) Zmiany klimatu – skutki dla polskiego społeczeństwa i gospodarki, Komitet Prognoz „Polska 2000 Plus” przy Prezydium PAN, pp13–46. (in Polish)
  • 81. Wypych A, Sulikowska A, Ustrnul Z, Czekierda D (2017) Variability of growing degree days in Poland in response to ongoing climate changes in Europe. Int J Biometeorol 61(1):49–59. https://doi.org/10.1007/s00484-016-1190-3
  • 82. Xia J, Yan Z, Wu P (2013) Multidecadal variability in local growing season during 1901–2009. Clim Dyn 41(2):295–305. https://doi.org/10.1007/s00382-012-1438-5
  • 83. Xia J, Yan Z, Jia G, Zeng H, Jones PD, Zhou W, Zhang A (2015) Projections of the advance in the start of the growing season during the 21st century based on CMIP5 simulations. Adv Atmos Sci 32(6):831–838. https://doi.org/10.1007/s00376-014-4125-0
  • 84. Żarski J, Dudek S, Kuśmierek-Tomaszewska R, Bojar W, Knopik L, Żarski W (2014) Agroklimatologiczna ocena opadów atmosferycznych okresu wegetacyjnego w rejonie Bydgoszczy [agro–climatological assessment of the growing season rainfall in the Bydgoszcz Region]. Infrastrukt I Ekol Teren Wiej 3:643–656 ((in Polish))
  • 85. Zhou B, Zhai P, Chen Y, Yu R (2018) Projected changes of thermal growing season over Northern Eurasia in a 1.5 °Cand 2 °C warming world. Environ Res Lett 13:035004. https://doi.org/10.1088/1748-9326/aaa6dc
  • 86. Zhu M, Zhang J, Zhu L (2021) Variations in growing season NDVI and its sensitivity to climate change responses to green development in mountainous areas. Front Environ Sci 9:678450. https://doi.org/10.3389/fenvs.2021.678450
  • 87. Ziernicka-Wojtaszek A (2009) Weryfikacja rolniczo-klimatycznych regionalizacji Polski w świetle współczesnych zmian klimatu [verification of agro-climatic regionalization types in Poland in the light of contemporary climate change]. Acta Agrophys 13(3):803–812 (in Polish)
  • 88. Ziernicka-Wojtaszek A, Zuśka Z, Krużel J (2015) Warunki termiczno-opadowe w okresie wegetacyjnym (1951–2010) na obszarze województwa podkarpackiego w świetle globalnego ocieplenia [pluvio-thermal conditions of the vegetation period (1951–2010) in the subcarpathian voivodeship in the light of global warming]. Acta Agrophys 22(3):345–354 (in Polish)
  • 89. Żmudzka E, Dobrowolska M (2001) Termiczny okres wegetacyjny w Polsce–zróżnicowanie przestrzenne i zmienność czasowa [Thermal vegetative period in Poland—spatial differentiation and time-dependent variability]. Prz Naukowy Wydz Inż I Kształt Śr 21:75–80 ((in Polish))
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3da643c1-8ead-4f9e-a23b-7af34ab20f2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.