PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Are EU environmental regulations consistent with the concept of internalisation of externalities – the case of Polish electricity sector

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Czy unijne regulacje środowiskowe są zgodne z koncepcją internalizacji kosztów zewnętrznych – studium przypadku dla polskiego sektora elektroenergetycznego
Języki publikacji
EN
Abstrakty
EN
The article’s goal is to examine whether the existing EU environmental regulations implemented in the Polish electricity sector are consistent with the concept of internalisation of external costs. The tool used in the research is the partial equilibrium model of the mid-term development of the Polish power sector. There are two scenarios. The first ‘base’ scenario assumes gradual decarbonisation of the Polish energy sector. In the ‘int’ scenario, the structure of energy production results from the full internalisation of external costs. The structural changes in the ‘base’ scenario are a significant challenge. All coal-based technologies are being drastically phased out and will be replaced by RES and nuclear technologies. The climate policy leading to a gradual reduction of CO2 emissions in Poland makes sense, assuming much higher external costs of CO2 emissions (€65/Mg CO2) than those assumed in this study.
PL
Celem artykułu jest zbadanie, czy istniejące unijne regulacje środowiskowe wdrażane w polskim sektorze elektroenergetycznym są zgodne z koncepcją internalizacji kosztów zewnętrznych. Narzędziem wykorzystywanym w badaniach jest model równowagi cząstkowej, umożliwiający planowanie rozwoju polskiego sektora elektroenergetycznego. Analizowane były dwa scenariusze. Pierwszy scenariusz "bazowy" zakłada stopniową ndekarbonizację polskiego sektora energetycznego. W scenariuszu "int" struktura produkcji energii jest wynikiem internalizacji kosztów zewnętrznych. Zmiany strukturalne w scenariuszu "bazowym" stanowią duże wyzwanie. Elektrownie węglowe będą drastycznie wycofywane i zastępowane przez technologie odnawialne i energię jądrową. Polityka klimatyczna prowadząca do stopniowej redukcji emisji CO2 w Polsce ma sens przy założeniu znacznie wyższych kosztów zewnętrznych emisji CO2 (65 €/Mg CO2) niż przyjętych w niniejszym artykule.
Rocznik
Tom
Strony
89--105
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Krakow, Mickiewicza Street 30, 30-059 Krakow, Poland
Bibliografia
  • Agencja Rynku Energii. (2016). Aktualizacja analizy porównawczej kosztów wytwarzania energii elektrycznej w elektrowniach jądrowych, węglowych i gazowych oraz odnawialnych źródłach energii. https://www.gov.pl/web/klimat/publikacje-jadrowe-raporty-analizy-opracowania
  • Baumol, W. J., & Oates, W. E. (1988). The theory of environmental policy. Cambridge: Cambridge University Press.
  • Bickel, P., & Friedrich, R. (2005). Externalities of Energy Methodology 2005 Update. European Communities.
  • Borozan, D., Pekanov, D. S., & Adzic, S. (2015). The Internalization of External Costs of CHP Plants in Croatia. Energy Procedia, 75, 2596–2603.
  • Capros, P., Tasios, N., De Vita, A., Mantzos, L., & Paroussos, L. (2012). Model-based analysis of decarbonising the EU economy in the time horizon to 2050. Energy Strategy Reviews, 1, 2, 76–84.
  • Chen, H., Tang, B.-J.H, Liao, H., & Wei, Y-M. (2016). A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China. Applied Energy, 183, 1333–1345.
  • Coase, R. H. (1960). The Problem of Social Cost. The Journal of Law and Economics, vol. III.
  • Dales, J. H. (2002). Pollution, Property & Prices. Edward Elgar Publishing.
  • Departament Analiz Strategicznych. Kancelaria Prezesa Rady Ministrów. (2015). Model optymalnego miksu energetycznego dla Polski do roku 2060. https://archiwum.premier.gov.pl/wydarzenia/aktualnosci/model-optymalnego-miksu-energetycznego-dla-polski-do-roku-2060-0.html
  • Devitt, T. W, Yerino, L. V, Ponder, T. C., & Chatlynne, C. J. (2012). Estimating Costs of Flue Gas Desulfurization Systems for Utility Boilers. Journal of the Air Pollution Control Association, 26, 3, 204–209.
  • Dimitrijevic, Z., & Tatic, K. (2012). The economically acceptable scenarios for investments in de-sulphurzation and denitrification on existing coal-fired units in Bosnia and Herzegovina. Energy Policy, 49, 597–607.
  • Engel, H., Purta, M., Speelman, E., Szarek, G., & van der Pluijm, P. (2020). Neutralna emisyjnie Polska 2050. McKinsey & Company. https://www.mckinsey.com/pl/~/media/mckinsey/locations/europe%20and%20middle%20east/polska/raporty/carbon%20neutral%20poland%202050/neutralna%20emisyjnie%20 polska%202050_raport%20mckinsey.pdf
  • European Commission. (2020). Final Report. Cost of Energy (LCOE). http://trinomics.eu/wp-content/uploads/2020/11/Final-Report-Cost-of-Energy-LCOE.pdf
  • Fahlén, E., & Ahlgren, O. (2010). Accounting for external costs in a study of a Swedish district-heating system – An assessment of environmental policies. Energy Policy, 38, 9, 4909–4920.
  • Gajowiecki J. (Ed.). Ścieżki dekarbonizacji. Model miksu elektroenergetycznego do roku 2035 wraz z analizą potencjalnych problemów bilansowania KSE z generacją wiatrową. (2019). Stowarzyszenie Energetyki Wiatrowej. http://psew.pl/wp-content/uploads/2019/01/%C5%9Acie%C5%BCki-dekarbonizacji-aktualizacja-stycze%C5%84-2019-r..pdf
  • Georgakellos, D. A. (2010). Impact of a possible environmental externalities internalisation on energy prices: the case of the greenhouse gases from the Greek electricity sector. Energy Econ, 32, 202–209.
  • Ghoddousi, S., & Talebi, A. F. (2021). The External Cost of Electricity Generation: An Applicable Approach for Environmental Decision-Making on Electricity Exportation Strategy. European Journal of Sustainable Development Research, 5, 3.
  • Hall, D. C. (2004). External Costs of Energy. Encyclopedia of Energy, 2, 651–667.
  • Hübler, M., & Löschel, A. (2013). The EU Decarbonisation Roadmap 2050 – What way to walk? Energy Policy, 55, 190–207.
  • Jorii, M., Van Passel, S., & Saghdel, H. S. (2018). External costs from fossil electricity generation, A review of the applied impact pathway approach. Energy & Environment, 29, 5, 635–648.
  • Juroszek, Z., & Kudełko, M. (2016). A model of optimisation for local energy infrastructure development. Energy, 96, 625–643.
  • Kim, S-H. (2007). Evaluation of adverse environmental impacts of electricity generation, neoclassical and institutional approaches. Energy Policy, 35, 413–423.
  • Kiuila, O. (2018). Decarbonisation perspectives for the Polish economy. Energy Policy, 118, 69–76.
  • Klaassen, G, & Riahi, K. (2007). Internalizing externalities of electricity generation, An analysis with MESSAGE-MACRO. Energy Policy, 35, 2, 815–827.
  • Kudełko, M. (2006). Internalisation of external costs in the Polish power generation sector, A partial equilibrium model. Energy Policy, 34, 18, 3409–3422.
  • Kudełko, M. (2009). External costs of Power Plants – Results of the NEEDS Project. Rynek Energii, 4(83).
  • Kudełko, M. (2020). Metodyka prognozowania rozwoju krajowego sektora energetycznego. In Sosnowski M. (Ed.) Polityka gospodarcza w warunkach przemian rozwojowych. Wrocław, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu.
  • Máca, V., Melichar, J., & Ščasný, M. (2012). Internalization of External Costs of Energy Generation in Central and Eastern European Countries. The Journal of Environment & Development, 21, 2, 181–197.
  • Marano, M,. & Sharp, G. (2006). Estimating SCR installation costs. Power, 150, 1.
  • Ministry of Energy. (2021). Energy policy of Poland until 2040. Appendix 2. https,//www.gov.pl/web/klimat/polityka-energetyczna-polski
  • Ministry of Energy. (2021a). Energy policy of Poland until 2040. https,//www.gov.pl/ web/klimat/polityka-energetyczna-polski
  • Mrowiec, D. (2019). Levelized cost of electricity (LCOE) as a comparative indicator of various technologies electricity generation costs. Energetyka, 2(71–76).
  • New Energy Externalities Development for Sustainability (NEEDS). (2009). https,//cordis.europa.eu/project/id/502687
  • Pearce, D., & Turner, K. (1990). Economics of Natural Resources and the Environment. Harvester Whateshaw.
  • Pigou, A. (1932). The Economics of Welfare. Macmillan.
  • Polish Statistics. (2019). Environment Protection. https,//stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html
  • Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., & Sparber, W. (2020). Classification and challenges of bottom-up energy system models – A review. Renewable and Sustainable Energy Reviews, 129, 109917.
  • Rafaj, P., & Kypreos, S. (2007). Internalisation of external cost in the power generation sector, Analysis with Global Multi-regional MARKAL model. Energy Policy, 35, 2, 828–843.
  • Rentizelas, A, & Georgakellos, D. (2014). Incorporating life cycle external cost in optimization of the electricity generation mix. Energy Policy, vol. 65, 134–149.
  • Risk associated with the decarbonisation of the Polish power sector. (2018). IBS Research Report 05. https,//ibs.org.pl/app/uploads/2018/11/IBS_Research_Report_05_2018.pdf
  • Samadi, S. (2017). The social costs of electricity generation – categorising different types of costs and evaluating their respective relevance. Energies, 10(3), 356. https,//doi.org/10.3390/en10030356
  • Sofia, D., Gioiella, F., Lotrecchiano, N., & Giuliano, A. (2020). Cost-benefit analysis to support decarbonization scenario for 2030, A case study in Italy. Energy Policy, 137, 111137.
  • The Energy Market Agency. (2019). Emissions in power and CHP plants. https,//www.are.waw.pl/sklep/details.xhtml?poz=346&kosz=false
  • The Energy Market Agency. (2019a). Energy statistics. https,//www.are.waw.pl/sklep/details.xhtml?poz=352
  • The Energy Market Agency. (2019b). Heat bulletin. https,//www.are.waw.pl/sklep/position.xhtml?poz=12
  • The Energy Market Agency. (2019c). Situation in electricity sector. https,//www.are.waw.pl/sklep/position.xhtml?poz=11
  • Tol, S. J. (2021). Europe’s Climate Target for 2050, An Assessment. Intereconomics, 56, 330–335.
  • Wierzbowski, M., Filipiak, I., & Lyzwa, W. (2017). Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system. Renewable and Sustainable Energy Reviews, 74, 51–70.
  • Wu, Z. (2001). Air pollution control costs for coal-fired power stations. International Centre for Sustainable Carbon. https,//www.sustainable-carbon.org/report/airpollution-control-costs-for-coal-fired-power-stations-ccc-53/
  • Wyrwa, A., Suwała, W., Pluta, M., Raczyński, M., Zyśka, J., & Tokarski, S. (2022). A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system. Energy, 239, Part E, 15, 122438.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3da57289-19ab-46fa-9dd0-5c2540096887
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.